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ABSTRACT

This paper proposes a Bayesian formulation of the widely used image-mixing
augmentations typically using two images, to general K-image cases. Based on the
proposed formulation, we introduce a new uncertainty measuring method focusing
on the image-mixing augmentations’ randomness. We acquire the sub-sampled
data pool that can efficiently represent the overall data distribution based on the
estimated uncertainty. For supplementing the sub-sampling method, we propose
a new data generation mechanism filling in the crucial blanks of the sub-sampled
data pool to represent the overall distribution.

1 INTRODUCTION

The importance of data augmentation becomes further emphasized after the advent of deep learning
networks (DeVries & Taylor, 2017; Yun et al., 2019; Zhang et al., 2017). Based on the necessity
of augmented data, many studies have proposed various augmentation methods to improve the data
efficiency for deep learning network. Among the various methods of data augmentation widely used,
the image-mixing augmentation methods, such as Mixup Zhang et al. (2017) and CutMix Yun et al.
(2019), recently show the impressive performance to train the large-scaled deep learning networks.

In this paper, we derive a novel Bayesian formulation that can generalize the image-mixing augmen-
tation. Based on the proposed formulation, we successfully obtain the results even after expanding
the augmenting variation of the image-mixing augmentation methods. Especially, we find that the
mixture of three or more images can further improve the performance from the baseline methods
using only the paired images. The proposed derivation is also important since the uncertainty of the
augmented samples can be estimated by Bayesian formulation. Based on the estimated uncertainty,
we can acquire the sub-sampled data pool that can efficiently represent the overall data distribution.
To resolve the data aliasing problem occurred by the sub-sampling, we additionally propose a data
generation mechanism filling in the crucial blanks of sub-sampled data pool to represent the overall
distribution, showing the state-of-the-art performance compared to sub-sampling competitors.

2 TASK FORMULATION

2.1 PRELIMINARY: BAYESIAN DEEP LEARNING

Bayesian typically formulates the classification problem of the labeled samples {xn, ln} ∈ D, n =
1, ..., N as the inference problem of the posterior distribution p(l|x). Here, we term x and l, which
are the input image and label, to be the general samples in D for simplicity. By the derivation
from Monte-carlo Dropout Gal & Ghahramani (2016), we can think the distribution p(l|x) as the
marginalized form of random variable W , which is network parameters here:

p(l|x) =

∫
p(l|x,W )p(W )dW,

∼=
1

Ns

∑
fW (l|x)p(W ),

(1)
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where the function fW (l|x) is the variational realization of the distribution p(l|x,W ), which is
typically defined as the neural network with parameter W with final Softmax layer. Ns denotes
the number of samples drawn by p(W ). The promising aspect of this derivation is that the usual
stochastic gradient based (SGD) optimization of the model, with the weight jittering by p(W ),
makes to mimic the variational function fW (·) to the real distribution p(l|x,W ). Typically, the prior
distribution p(W ) is defined by random perturbation of the weightW , i.e., dropout (Srivastava et al.,
2014). In inference time, we can numerically approximate the distribution by the sampling from the
prior distribution p(W ), as in (1). In this paper, we argue that the uncertainty can be defined either
from weight parameter W , but from the data sample x.

2.2 MODEL UNCERTAINTY FROM COMPOSITED DATA

Here, we define a classification model using image-mixing augmentation in a probabilistic frame-
work. Assume that the model input xc are composed of x1, ..., xK , as in:

xc = fc(x1, ..., xK ;φ1, ..., φK), (2)

where the function fc(·) denotes the composite function, and the term φ = {φ1, ..., φK} is a mixing
parameter denoting the portion of each sample xk on the composite sample xc. We note that it is a
generalization of the popular image-mixing augmentations, CutMix and Mixup using two images,
to K-image case. Specifically, for the Mixup case, fc(·) is defined as the weighted summation as:

xc = ΣKk=1φkxk. (3)

The mixing parameter φ is defined by Beta distribution in usual two-image cases (Yun et al., 2019;
Zhang et al., 2017), and naturally be expanded to Dirichlet distribution φ ∼ Dir(α),α ∈ RK .
Obviously, the composite sample xc is random variable given the hyper-parameter α.

For K-image generalization of CutMix, namely DCutMix, the definition of the function fc(·) is
more complicated to contribute all the images x1, ..xK to composite image xc with respect to their
mixing parameters φ. Here, we composite the images by the stick-breaking process (SBP) Sethura-
man (1994), one widely used approach of sampling from Dirichlet distribution.

Assume that we sample φ from the prior distribution Dir(α) and want to composite the image with
respect to the proportion φk ∈ φ, Σkφk = 1. From SBP, the composition can be done by defining
the intermediate random variable v = [v1, ..., vK ] ∈ RK such that:

v1 = φ1

vk = φk/

k−1∏
j=1

(1− vj), k = 2, ...,K.
(4)

Now, we define the image fractions r = {r1, ..., rK} of the sample x; in this case, we set the sample
x as an image for simplicity. Let the function r̃ = d(x|v, γ) randomly discriminates the image by
r̃ : x\r̃ to the ratio v : 1− v, where the term x\r̃ denotes the region of x excluding r̃. Note that the
variable v is defined as Beta-distribution by the derivation from SBP. The fraction r is calculated as:

rk = d({x\
∑k−1
j=0 rj}|vk, γ), k = 1, ...,K − 1. (5)

where the virtual fraction r0 is set to ∅, and the last fraction rK = x\
∑K−1
j=1 rj . We will set the

hyper-parameter γ to denote the randomness in the discrimination function, and hence the composite
function fc of the CutMix will be governed by two hyper-parameters α and γ. See Appendix B for
the classification performance enhancement from the generalization.

The probabilistic framework of the classification applying the augmentation is defined as:

p(lc|xc) =

∫
p(lc|xc,φ)p(φ|α)dφ,

=

∫
p(Σk{φklk}|fc(x;φ))p(φ|α)dφ,

∼=
1

Ns

∑
φ(j)

fW ({Σkφ(j)k lk}|fc(x;φ(j))),

(6)
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where (x, l) = {(x1, l1), ..., (xK , lK)}, lc = Σk{φklk}, and φ(j) is the jth sample drawn from
the Dirichlet prior distribution p(·|α). Hereafter, we define the label li ∈ RC to be a one-hot
indexing variable denoting one of total C classes. By the derivation from Monte-carlo Dropout Gal
& Ghahramani (2016), we can set the distribution p(lc|xc) to the variational function fW (·), which
is realized by a classification network having the network parameter W with softmax output. For
CutMix case, we consider another variable γ in (6) as:

p(lc|xc) ∼=
∑
γ(i)

∑
φ(j)

fW ({Σkφ(j)k lk}|fc(x;φ(j), γ(i))). (7)

Consequently, by (6) and (7), we calculate the uncertainty given the composite samples.

3 DATASET DISTILLATION

3.1 COEFFICIENT OF VARIATION BASED SUB-SAMPLING

The sub-sampling is not a trivial problem even though we can get exact confidence of each sample.
Let assume some typical strategies: selecting most certain samples, vice versa, or uniformly dis-
tribute the samples over difficulty. We can easily think of some plausible aspects of each strategies.
To tackle the sub-sampling problem, based on (7), the numerical approximation of the distribution
p(lc|xc), we first define the sub-sampling measure, corresponding to the distribution derived in (7):

E[L(lc|xc)] ∼=
∑
γ(i)

∑
φ(j)

L({Σkφ(j)k lk}|fc(x;φ(j), γ(i))), (8)

where x = {x1, .., xK}, and the loss L(lc|xc) corresponds to the likelihood distribution p(lc|xc).
The expectation is defined on the space by the random variable φ and γ.

Using the expected loss, we select an anchor sample xi ∈ x with fixed φi and then jitter φ\φi
related to other samples x\xi to calculate the uncertainty of the anchor sample xi. The φ\φi
are drawn from a conditional Dirichlet distribution D(α\αi), by its definition. We will term
Li = {Li,m|m = 1, ...M} as the loss for all the jittered composition given the anchor xi, and
correspondingly calculated by (8). The number M denotes the total number of jittering from φ\φi.
To design the most effective data sub-sampling policy, we introduce a semantic measure function
O(·) from the obtained Li. The function O(·) is designed to indicate how informative the sample
xi is among all the images of same class, inspired by loss-based sub-sampling measures (Lin et al.,
2017; Kumar et al., 2010; Kuchnik & Smith, 2018), and defined as O(Li) = σ(Li)

m(Li)
, where σ(·)

and m(·) is the standard deviation and average of Li. The definition of O(·) is called coefficient of
variation (CV) based measure.

By using the measure O(·), a newly sub-sampled set D for each class is defined as follows:

D = S(O(Lk)|k = j1, ..., jNintra , t), (9)

where S(·) denotes a sampling function indicating whether xk is to be included inD or not by using
the sub-sampling ratio t. Here, j denotes the index of Nintra number of intra-class images where
the class labels are equivalent among the others.

3.2 SAMPLE GENERATION MODEL

To supplement the information loss from the sub-sampling, we propose a sample generation method
where the generated sample x̃ can possibly lie in the similar manifold of composited samples xc =

fc(x;φ), given the equivalent soft-label lc = {Σkφ(j)k lk} for generating x̃.

Here, we define a variational distribution x̃ ∼ q(xa|x, ρ), where q(xa|x, ρ) = qV (xa|µ)qp(µ|ρ),
and xa denotes a random variable approximating xc. The distributions qV (xa|µ) and qp(µ|ρ) are
defined as a generation network given µ and a prior distribution sampling µ. The term ρ is defined
as a sampling hyper-parameter for µ, where the vector µ ∈ RC denotes the soft label. Our goal is to
draw sample x̃ from the distribution q(·).
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By substituting the distribution q(·) for (6), the distribution p(lc|xc) is approximated by p̃(µ|xa) as:

p̃(µ|xa) =

∫
p(µ|qV (xa|µ))qp(µ|ρ)dρ,

∼=
1

Ns

∑
µ(j)

fW (µ(j)|qV (xa|x, µ(j))),
(10)

where the variable µ(j) is drawn from qp(·|ρ). Following (10), we train the generation network
parameter V through minimizing cross-entropy loss between the softmax output of fW (·) given the
generated image x̃, and its soft label µ. In implementation, the variational prior qp(µ|ρ) sets µi=g
as 1− ε for the ground truth class g of x and uniformly samples µi 6=g for background classes i 6= g,
where µi denotes the label for class i and ε denotes a label smoothing factor as in Szegedy et al.
(2016). The function qV (xa|x, µ) is defined as an auto-encoder structure: including an encoder
z = qVE

(x) and a decoder x̃ = qVD
(z, µ). Here, the network parameter V is defined as {VE , VD}.

3.3 EXPERIMENTAL RESULTS ON SAMPLE GENERATION

Figure 1: Performance (Left) and the output im-
age visualizations (Right) from the generators,
from various smoothing factor ε.

Figure 1 shows the performance and visualiza-
tion of output images for the sample genera-
tion model V depending on the smoothing fac-
tor ε for the variational prior qp(µ|ρ) in (10).
As shown in right Figure 1, the generated im-
age from the sample generation model on each
ε may seem like simply adding a meaningless
noise to the original image (i.e. ε = 0). How-
ever, Ilyas et al. (2019) demonstrated that the
small perturbations, the byproducts of adver-
sarial attack for a specific background class,
can serve as a well-generalized and transfer-
able feature to train a new model. Through this
findings, we want to argue that the noise in the
generated image is not a meaningless noise but
is a feature of the background classes, and we
believe that it can help to supplement the infor-
mation loss of the sub-sampling. We trained the
sample generation model on five cases of ε. As a result, large ε diminishes the perceptible informa-
tion of the original input image x, showing significantly deteriorated performance. On the other
hand, small ε showed too small reflection of other background classes on x, hence showing lit-
tle enhancement from the baseline case.Notably, utilizing generator with optimal ε = 0.5 clearly
outperformed the random sampling and the baseline case.

4 CONCLUSION

This paper introduced a new Bayesian perspective on expanding the image-mixing augmentations
into general K-image cases. Based on this generalized formulation, we newly derived the data given
Bayesian uncertainty of the model and showed its effectiveness on the data sub-sampling method,
also proposing a sample generation method backing-up the information loss from the sub-sampling.
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A SAMPLE GENERATION MODEL

Implementation details: Let x and µ denote the original input image and a soft label where the
ground truth label of x is smoothed by ε, respectively. For training the generation model V , we
minimize the cross entropy loss L between µ and the output of the pretrained classifier W ′ as
follows:

V ∗ = arg min
V

L(µ|W ′(qV (xa|x, µ))), (11)

where x̃ = qV (xa|x, µ) is defined as an auto-encoder structure which consists of an encoder z =
qVE

(x) and a decoder x̃ = qVD
(z, µ). In order to generate the sample x̃ considering the distribution

of µ, inspired by Mirza & Osindero (2014), the output of the encoder z is concatenated with the
soft label µ to be the input of decoder qVD

. Here, we employed U-Net (Ronneberger et al., 2015)
as the backbone model for V . For training the generation model V , we used Adam optimizer
(Kingma & Ba, 2014), and set the mini-batch size, momentum and weight decay as 64, 0.9 and
5e-4, respectively. We set the number of training epochs and initial learning rate as 600 and 0.0001,
and the learning rate is decayed by the factor of 0.1 at 450 and 540 epoch.

Subsequently, for training a classifier W from the scratch using the pretrained generator V trained
by (11), we minimize the cross entropy loss with the generated samples from V as follows:

W ∗ = arg min
W

L(µ|W (qV (xa|x, µ))). (12)

Note that this auxiliary loss from generated samples can be jointly optimized with the cross entropy
loss from image mixing augmentation methods such as DCutMix.

Method Top-1
Err (%)

Baseline (High CV sampling + DCutMix) 60.85
+ Label smoothing (ε = 0.5) 59.46
+ generator (one-hot label) 59.73
+ generator (ε = 0.5) 57.45

Table 1: Ablation study on the sample generation model.

Ablation study: Table 1 shows the ab-
lation study for the components of the
generator. The result shows that addi-
tional applying of the smoothed label
with ε to the model without image gen-
eration showed higher error rate com-
pared to the case where generator with
smoothed label was applied. This result
implies the effectiveness of using gener-
ator and the importance of reflecting the
label information on x, which were not
considered in Szegedy et al. (2016). Furthermore, the generator which employs the one-hot distri-
bution as the prior distribution qp(µ|ρ) did not prevail the generator where the smoothed label µ was
employed as the prior distribution, since the generated sample x̃ resembles x too closely. This result
informs the effectiveness of utilizing the soft label rather than one-hot label, regarding the design
choice of generator.

B DISCUSSION: K-IMAGE GENERALIZATION OF IMAGE-MIXING
AUGMENTATION METHODS

Our supposition is that the proposed probabilistic framework (6) well generalizes the data distribu-
tion: intuitively, the randomly composited samples will densely cover the data spaces between the
training samples. In this section, to verify the advantage of our method, we conduct the experiments
on K-image generalization of CutMix and Mixup in the classification task. By the observations
from the experiments, we demonstrate that the blessing of the proposed generalization comes from
making a model converge to a more lower and wider local minima.

We present the toy-classification test results on CIFAR-10 and 100 (Krizhevsky et al., 2009) dataset,
as in Table 2 and 3. The results are obtained from the equivalent training and augmentation specific
hyper-parameter setup used in Yun et al. (2019). Firstly, Table 2 shows the superiority of DCut-
Mix and DMixup, which are the proposed generalized version of CutMix and Mixup, over the other
augmentation and regularization methods. With light-weight backbone PyramidNet-110 Han et al.
(2017), DCutMix and DMixup improve the performance compared to CutMix and Mixup by ap-
proximately 1% and 0.32%, respectively. For the deeper neural network PyramidNet-200, DCutMix

7
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Model # Params Top-1
Err (%)

PyramidNet-110 (α̃ = 64) Han et al. (2017) 1.7 M 19.85
+ Mixup Zhang et al. (2017) 1.7 M 18.92
+ CutMix Yun et al. (2019) 1.7 M 17.97
+ DMixup (K = 3, α = 1

3
) 1.7 M 18.6

+ DCutMix (K = 5, α = 0.2) 1.7 M 16.95

PyramidNet-200 (α̃ = 240) 26.8 M 16.45
+ StochDepth Huang et al. (2016) 26.8 M 15.86
+ Label Smoothing Szegedy et al. (2016) 26.8 M 16.73
+ Cutout DeVries & Taylor (2017) 26.8 M 16.53
+ DropBlock Ghiasi et al. (2018) 26.8 M 15.73
+ Mixup Zhang et al. (2017) 26.8 M 15.63
+ Manifold Mixup Verma et al. (2019) 26.8 M 15.09
+ CutMix Yun et al. (2019) 26.8 M 14.47
+ DMixup (K = 3, α = 1) 26.8 M 15.07
+ DCutMix (K = 5, α = 1) 26.8 M 13.86

Table 2: Comparison of DCutMix and DMixup against other augmentations and regularization
methods for PyramidNet-110, 200 models on CIFAR-100 dataset.

Model Top-1
Err (%)

PyramidNet-200 (α̃ = 240) 3.85
PyramidNet-200 + Cutout DeVries & Taylor (2017) 3.1
PyramidNet-200 + Mixup Zhang et al. (2017) 3.09
PyramidNet-200 + Manifold Mixup Verma et al. (2019) 3.15
PyramidNet-200 + CutMix Yun et al. (2019) 2.88
PyramidNet-200 + DMixup (K = 5, α = 0.2) 2.9
PyramidNet-200 + DCutMix (K = 3, α = 1

3
) 2.42

Table 3: Impact of DCutMix and DMixup on CIFAR-10 dataset. PyramidNet-200, heavier than
Pyramid-110, network was used.

and DMixup achieve the enhancement compared to original version and DCutMix shows the lowest
top-1 error compared to other baselines. Finally, we evaluate our proposed methods on CIFAR-10
dataset as shown in Table 3. We can see from the result that DCutMix and DMixup both achieved the
performance enhancement. Specifically, DCutMix shows the best performance among the baseline
augmentation methods again. The overall results demonstrate the effectiveness of the proposed K-
image generalization for augmentation methods. For more explicit investigation, we further analyze
the generalized CutMix by its loss landscape.

Flatness of the loss-surface near local minima has been considered as one key signal for better gen-
eralization of the model, by the number of previous studies (Keskar et al., 2016; Pereyra et al., 2017;
Zhang et al., 2018; Chaudhari et al., 2019; Cha et al., 2020). Based on these findings, we plot the
patterns of loss-surfaces of each model by using PyHessian (Yao et al., 2019) framework, as shown
in Figure 2. The plotted result shows that our generalized version of CutMix (i.e., DCutMix) has a
flatter loss-surface near local minima among the comparisons. Also, DCutMix enables to have lower
losses in overall, denoting well generalization to the unseen test data as well. We believe that this
observation can be one supporting signal for the superior result of proposed augmentation. From
a more analytical point of view, we can nully-hypothesize that the merit of K-image generalization
of CutMix regarding the wide local minima comes from a more softened label than that of CutMix.
This is because several papers have reported that a model trained with an artificially smoothed label
can make a model converge to wide local minima and hence achieve better generalization (Pereyra
et al., 2017; Zhang et al., 2018; Cha et al., 2020), for example, Label-Smoothing shown in Figure 2.
However, as opposed to the previous methods, note that our softened label directly reveals the aug-
mented ratio of several images, and hence, we conjecture that this would be one key factor why the
model trained by our approach converges to lower and wider minima.

The previous augmentation methods (Kim et al., 2021; Zhang et al., 2017) reported a conflicting
result with ours, where they could not obtain the positive enhancement by the K-image generaliza-
tion of the augmentation method. However, we argue that we could achieve the advantage of it with
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Figure 2: Comparison of image mixing augmentation and regularization methods in perspective of
the loss-surface near local minima. We measured the loss-surfaces on CIFAR-100 with Pyramid-
Net Han et al. (2017). λ1 and λ2 denote the degree of perturbation across the top-1 and 2 eigen
vectors.

above experimental and analytical results. Also, we conducted the experiment with the same setting
used in Kim et al. (2021) and we could get a positive improvement after expanding to K-image
generalization, as shown in Table 4.

K (# inputs for Mix) CutMix‡ CutMix

K=2 21.29 21.34
K=3 22.01 21.01
K=4 22.20 20.5
K=5 - 21.01
K=7 - 20.9
K=9 - 20.93

Table 4: Top-1 error rate tendency given mixing multiple images for CutMix on CIFAR-100 and
PreActResNet18. ‡ denotes the reported result from Kim et al. (2021).

C DISCUSSION: DATASET DISTILLATION

Figure 3: Top-1 test error plot of data sub-sampling methods tested on CIFAR-100. The model were
trained with DCutMix.
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We investigate the proposed sub-sampling method trained with DCutMix as an augmentation in Fig-
ure 3. In the figure, we compare our data sub-sampling method with others using various measures
for O(·) and function S(·). The full 10K validation set of CIFAR-100 was used for evaluation, and
we report the averaged results experimented by three independent seeds using PyraimdNet (Han
et al., 2017).

As shown in the graph in Figure 3, sampling the easy-only or hard-only examples based on
m(Li) shows deteriorated performance compared to the random sub-sampling. The hard-only sub-
sampling severely suffered from poor generalization, which indicates that the outliers and noisy
examples are not informative for training a model under the constraint of small number of training
samples. These results imply that sub-sampling only easy or hard samples extracts the biased data
samples that cannot be helpful for better generalization. Also, simply employing standard deviation
σ(Li) as measure O(·) showed a similar test error plot compared to the above mean based sampling
methods. On the other hand, our high CV based sub-sampling outperforms the random sampling by
a significant margin, especially 5.79% lower test error in case of the number of sub-sampled training
samples being extremely small (i.e. t = 0.05).

D APPLICATION: NETWORK ARCHITECTURE SEARCH

Figure 4: Performance of neural networks searched on the entire CIFAR-100 dataset (baseline), ran-
domly sub-sampled CIFAR-100 dataset, and sub-sampled CIFAR-100 drawn by high CV measure.
We adjusted the search epochs from 0 to 50 for baseline, while adjusting the sub-sample ratio t from
0.05 to 0.3 for sub-sampling.

This section shows the practical and effective usage of our proposed data distillation method and
sample generation model on another domain, specifically on network architecture search (NAS).
Our goal is to reduce the time spent for searching the architectures by searching on the sub-sampled
dataset drawn from our framework, rather than on the full training dataset. We adopt one of the most
computationally efficient and stabilized NAS method, PC-DARTS (Xu et al., 2019) as our baseline.
Here, we used the equivalent searching hyper-parameters proposed in Xu et al. (2019).

Figure 4 shows the outstanding efficiency of our sub-sampling framework in terms of search time
and accuracy. Especially, ours (searching on high CV sub-sampled dataset) achieves comparable
accuracy with 7.7× reduced search time compared to other baselines. Furthermore, ours consistently
outperforms random sub-sampling given the equivalent number of data samples.

As shown in Table 5, we could observe that ours serves as an effective proxy dataset and the neural
network searched by ours is also well-generalized on ImageNet. Note that, ours reduced the search
GPU time up to 0.01 days (i.e. 16 minutes), while showing comparable or even higher accuracy
compared to the models searched with PC-DARTS on the entire CIFAR-10, CIFAR-100, and ran-
domly sub-sampled ImageNet dataset. Also, compared to the other NAS methods, ours achieves the
best performance while enjoying the significantly reduced search computational cost.

As an ablation study of our method on NAS, we conducted the experimental analysis to verify the
impact of high CV sub-sampling and sample generator on the search process in Table 6. Here, we
searched for 50 epochs for all methods and set the sub-sampling ratio t = 0.05 for the cases search-
ing with high CV sub-sampled dataset. Regarding the generator, we optimize the cross entropy loss
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Architecture Top-1
Err (%)

Top-5
Err (%)

# Params
(M)

# FLOPs
(M)

Search Cost
(GPU days)

Search
method

AmoebaNet-C (Real et al., 2019) 24.3 7.6 6.4 570 3150 evolution
MnasNet-92 (Tan et al., 2019) 25.2 8.0 4.4 388 - RL
ProxylessNAS (Cai et al., 2018) 24.9 7.5 7.1 465 8.3 gradient-based
SNAS (Xie et al., 2018) 27.3 9.2 4.3 522 1.5 gradient-based
BayesNAS (Zhou et al., 2019) 26.5 8.9 3.9 - 0.2 gradient-based

PC-DARTS (CIFAR10) Xu et al. (2019) 25.1 7.8 5.3 586 0.1 gradient-based
PC-DARTS (ImageNet) Xu et al. (2019) 24.2 7.3 5.3 597 3.8 gradient-based
PC-DARTS (CIFAR100) Xu et al. (2019) 23.8 7.09 6.3 730 0.1 gradient-based
PC-DARTS (High CV Sub-sampled CIFAR100) 24.3 7.2 5.8 671 0.01 gradient-based

Table 5: Comparison of the state-of-the-art NAS methods on ImageNet under comparably small
resource constraints. (·) denotes the proxy dataset where the architecture was searched on.

between the generated samples and soft labels subject to the architecture hyper-parameters (i.e. α,
β in Xu et al. (2019)). Note that high CV sampling considerably reduced search time of PC-DARTS
with comparable accuracy. Utilizing generator for searching further raises accuracy by 1.07% with
a small burden of search resources, while still showing significantly reduced search time compared
to baseline PC-DARTS.

Method Search Mem
(GB)

Search Cost
(GPU hours)

Top-1
Acc (%)

PC-DARTS (baseline) 10.9 (1×) 2.26 (1×) 81.81
+ High CV sampling 10.5 (0.96×) 0.13 (0.05×) 81.89
+ High CV sampling + generator 12.9 (1.18×) 0.17 (0.07×) 82.88

Table 6: Impact of high CV sampling and the generator on the performance of PC-DARTS in terms
of GPU usage, search time and the accuracy, where the sub-sampling ratio t = 0.05.
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