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ABSTRACT

Recent improvements in synthetic data generation make it possible to produce im-
ages that are highly photorealistic and indistinguishable from real ones. Further-
more, synthetic generation pipelines have the potential to generate an unlimited
number of images. The combination of high photorealism and scale turn the syn-
thetic data into a promising candidate for potentially improving various machine
learning (ML) pipelines. Thus far, a large body of research in this field has focused
on using synthetic images for training, by augmenting and enlarging training data.
In contrast to using synthetic data for training, in this work we explore whether
synthetic data can be beneficial for model selection. Considering the task of image
classification, we demonstrate that when data is scarce, synthetic data can be used
to replace the held out validation set, thus allowing to train on a larger dataset.

1 INTRODUCTION

Traditionally, in supervised ML pipelines, the data used to train a model is divided into two sets, the
training set and the validation set. The former is used to train various models, while the latter is used
for ranking and selecting the best performing one, i.e., the best architecture and hyper-parameters.
Eventually, a final model with the selected configuration is trained on the entire data, including the
training and the validation sets. Test data is inaccessible to the training pipeline, especially for model
selection. The training-validation split provides means to estimate the models’ error rate, which can
be used for ranking. However, it is not helpful for selection of models that were trained on the entire
data. As the optimal hyper-parameters depend on the number of training data samples and since
models sharing the exact same hyper-parameters may exhibit large variance in accuracy, this may
eventually lead to selecting a sub-optimal model.

Recent advances in the quality of synthetic data generation pipelines (Karras et al., 2019; 2020; Peng
et al., 2018) have reduced the synthetic-to-real domain gap enough to successfully apply the gener-
ated data for training deep models (Besnier et al., 2020). Other works have focused on analyzing
and quantifying various characteristics of the domain gap (Sajjadi et al., 2018; Kynkäänniemi et al.,
2019). That said, to the best of our knowledge, the specific task of model selection with synthetic
data was not addressed. When using synthetic data for training a model, one’s goal is to minimize
the generalization gap w.r.t. the real domain (Ben-David et al., 2010). Solving for generalization in
presence of a synthetic-to-real domain gap is challenging. However, for model selection, one’s goal
is to use synthetic data for ranking a set of pre-trained models, while requiring rank preservation in
the real domain. In this work, we introduce a sufficient condition for cross-domain rank preservation
and empirically validate its value for model selection.

2 SYNTHETIC DATA FOR MODEL SELECTION

We follow notations similar to Ben-David et al. (2010). A domain is defined as a pair consisting of
a distribution D = 〈Ω, µ〉, where Ω is the sample domain and µ is the probability density function,
and a labeling function f : Ω → Y , where Y represents possible classes. We consider a particular
pair of domains, where one is the original real domain, denoted by 〈Dr, fr〉, and the second one is
synthetic, denoted by 〈Ds, fs〉, specifically tuned to mimic the real one. A hypothesis (model) is
a function h : Ω → Y . The risk or the probability that a hypothesis h disagrees with a labeling
function f , according to the distribution Dr is defined as: εr(h, f) = Ex∼Dr [h(x) 6= f(x)]. We
neglect the difference between fr and fs and use the shorthand notation, εr(h) = εr(h, f). Let
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Figure 1: Test vs. synthetic errors: Each point represents the test error (x axis), ε̂r, and synthetic
data error (y axis), ε̂s, of a single model. A total of 170 models were trained per CIFAR10 subset.
Each model was evaluated by multiple synthetic datasets represented by different colors.

∆ε denote the risk difference between two hypotheses, h1, h2 ∈ H, measured over a probabilistic
distribution D, i.e., ∆ε = ε(h2)− ε(h1).

A common approach for model selection is the holdout method, where two datasets are sampled
from 〈Dr, fr〉: the training set, Dtrn

r = {xi, yi}Ntrn
i=1 and the validation set, Dval

r = {xi, yi}Nval
i=1 .

A model (hypothesis) is trained using empirical risk minimization on Dtrn
r . Thereafter, the model’s

risk is estimated using the validation set: ε̂r(h) = 1
Nval

∑Nval

i=1 I(h(xi) 6= yi). This allows to
compare different models with different hyperparameters and to select those that minimize ε̂r(h).
Other approaches such as cross-validation and bootstrap also exist (Kohavi et al., 1995). Since
increasing the number of samples in the training set almost always increases the accuracy of the
model, a common final step is to re-train the model, using the hyperparameters found in the previous
step, on the entire dataset,Dtrn

r ∪Dval
r . However, without a held-out dataset, it is no longer possible

to compare models.

We propose to replace this two-step approach with a single step where we train a model on the entire
dataset, then rather than estimating ε̂r(h), we instead generate a new dataset Ds = {xi, yi}Ns

i=1 via
a generative model. Then we estimate the error ε̂s(h), where the domain 〈Ds, fs〉 approximates the
original domain 〈Dr, fr〉. Although it may often be impossible to guarantee highly accurate error
estimation due to the synthetic-real domain gap, below we present a corollary from Theorem A.2
(see Appendix A for statement and proof) outlining a sufficient condition for hypotheses’ error rank
preservation across domains.
Corollary 2.1. Given the definitions above, let δ(µr, µs) denote the total variation between the two
distributions, Dr,Ds. Then,

∆εs ≥ δ(µr, µs)⇒ ∆εr ≥ 0.

Informally, Corollary 2.1 indicates that if the total variation between the real and the synthetic distri-
butions is not larger than the synthetic risk difference between a pair of hypotheses, then their error
ranking is preserved across the domains.

3 EXPERIMENTS

All our experiments are performed on the CIFAR10 dataset (Krizhevsky et al., 2009). To evaluate
the impact of the training set size, we use the following train-test splits: 10K-50K (Train10K), 30K-
30K (Train30K), 50K-10K (Train50K). We emphasize that in all our experiments the following set
of rules holds:

1. Only the training portion of the data is available for any training purposes.
2. The test portion of the images is never used for model selection and is treated as non-

existent for any training purposes.
3. In each experiment, GANs for generating synthetic detests are trained only on the training

portion of the images, e.g., for experiments with the Train10K dataset, the GANs are trained
only on the 10K images.
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Figure 2: ES and RSS for model selection (standard architectures)↓: Test errors of the 17 ar-
chitectures (x-axis corresponds to architectures described in Appendix E) trained on the Train10K
dataset. “Last epoch” and ES show the average error of the 10 models for each architecture. RSS
and RSS+ES show the results of the selected model out of the 10 models.

3.1 RANK PRESERVATION EXPERIMENTS

In our first experiment we focus on several commonly used deep model architectures. For each ar-
chitecture, we select a number of variants. In total we experiment with 17 distinct architectures (see
Appendix E for details). For each architecture, 10 models were trained on each of the three datasets.
In Figure 1, we plot the empirical test errors, ε̂r, vs. the empirical synthetic errors, ε̂s, measured on
datasets generated by four different GAN methods: (a) StyleGAN2-10, (b) StyleGAN2-Cond, (c)
WGAN-GP-10, and (d) WGAN-GP-Cond (see details in Appendix F). It can be seen that, while in
general ε̂r 6= ε̂s, for the StyleGAN2 based models, we are able to produce datasets that preserve the
error ranking of different classification models. We measure this using Spearman’s rank correlation
coefficient. For different GANs, we have measured the following ranking coefficients: 0.97 (a), 0.98
(b), -0.19 (c) and 0.14 (d). In Sajjadi et al. (2018) the connection between total variation (δ(µr, µs))
and precision and recall for distributions (PRD) was established, and an empirical method for esti-
mating it was suggested. We use this method to empirically validate Corollary 2.1. For the GANs
above, we measured the following values: 3.5% (a), 8.7% (b), 43% (c) and 34% (d). Indeed we see
matching behaviors where the two models with high Spearman correlation have low total variation,
and vice verse. For example, it follows from Corollary 2.1 that for GAN (a), if two hypotheses have
∆εs(h1, h2) ≥ 3.5%, then their rank on real data will be preserved.

3.2 MODEL SELECTION EXPERIMENTS

We consider three model selection scenarios where synthetic data can be used:
1. Early stopping (ES): Given a training schedule of a single model, select an epoch from

which to take the model weights from.
2. Random seed selection (RSS): Given the same architecture and hyper-parameters, select

a model instance out of N trained models where the difference between the models is the
randomness of the training process, e.g., weight initialization and dataset sampling order.

3. Hyper-parameter search (HPS): Select a model out of a set of models trained with dif-
ferent hyper-parameters. Possible hyper-parameters are training parameters, e.g., learning
rate, batch size or architecture parameters, e.g., number of layers and network depth.

3.2.1 EARLY STOPPING AND RANDOM SEED SELECTION ON STANDARD ARCHITECTURES

We explore the impact of synthetic data on the ES and RSS model selection scenarios and their
combination. We highlight that both of these scenarios require a held-out dataset. Therefore in the
standard pipeline they cannot be used when training the model on the entire dataset. Using synthetic
data enables these selection scenarios. For ES, the best synthetic epoch was selected for every
training run. For RSS, per architecture, the model that performed the best on synthetic data at the last
epoch was selected. For RSS + ES, per architecture, the model that performed the best on synthetic
data at its best epoch was selected. We first experiment with the same standard model architectures as
in Section 3.1. Figure 2 shows the results on Train10K, demonstrating that for nearly all architectures
RSS improves accuracy. On the other hand, ES demonstrates only marginal impact on accuracy.
This might be because the models’ accuracy hardly changes across the last epochs, where the model
has already converged (see Appendix D for convergence plot examples). In Appendix C we show
the results for all datasets, where RSS shows comparable or better performance.
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Baseline ES RSS ES + RSS
Train10K 19.38 19.36 18.7918.7918.79 18.88
Train30K 9.19 9.19 9.099.099.09 9.1
Train50K 7.09 7.1 7.02 7.017.017.01

Table 1: ES and RSS for model selection (random wired networks)↓: Average test error of
(Baseline) all 640 models at the last epoch, (ES) all 640 models at the best synthetic set epoch,
(RSS) 64 models at the best synthetic set epoch, where each of the 64 models was selected out of
the 10 trained models for each architecture (by the best synthetic set error), (ES+RSS) 64 models at
the best synthetic set epoch and selected by RSS.

Synthetic protocol Standard protocol Avg of all models
Train10K 17.7417.7417.74±0.28±0.28±0.28 18.06±0.38 19.39±1.5

Train30K 8.648.648.64±0.12±0.12±0.12 8.81±0.17 9.17±0.45

Train50K 6.786.786.78±0.19±0.19±0.19 6.85±0.2 7.09±0.28

Table 2: Architecture hyper-parameters search results↓: Average error on held out test set. From
left to right: 10 best models selected using synthetic data; 10 best architectures selected by real
validation set and retrained on the entire training set; Average error of all trained models.

3.2.2 EARLY STOPPING AND RANDOM SEED SELECTION ON SIMILAR ARCHITECTURES

We next evaluate the impact of ES and RSS across multiple models with similar architectures. For
each dataset we constructed 64 architectures. For generating the architectures we used randomly
wired neural networks (RWNN) framework (Xie et al., 2019) with WS(2,0.25), resulting in 64
unique but similar architectures per dataset. Each architecture is trained 10 times on each dataset
(a total of 1920 models were trained). Table 1 concludes the experiment. Since the errors of the
models are of the same scale, we report the average performance. RSS has a significant impact on
model selection with an average improvement over the baseline of 0.59/0.1/0.07 (corresponding to:
Train10K, Train30K, Train50K). Similarly to the previous experiment ES has no significant impact.

3.2.3 SYNTHETIC DATA FOR ARCHITECTURE HYPER-PARAMETER SEARCH

Next, we explore the contribution of using synthetic datasets for selecting a model out of multiple
possible architectures and training instances (HPS). We consider three model selection protocols:

1. Selecting a random model: The naı̈ve baseline of selecting a random model.
2. Standard protocol: Split the dataset into training and validation subsets. Then: (1) train

each architecture N times with the training subset; (2) select the architecture that on aver-
age performed the best on the validation subset; (3) Train the selected architecture on the
entire dataset. This methods allows for selecting a “promising” architecture without the
ability to select a specific trained model instance (architecture and weights).

3. Synthetic protocol: (1) Train each architecture N times on the entire dataset; (2) evaluate
the accuracy at each training epoch on the synthetic dataset; (3) select the model that pre-
formed the best in step 2. This method allows for selecting a “promising” model instance.

We used the same 64 architectures per dataset, generated by the RWNN framework in Section 3.2.2.
Table 2 shows that the synthetic protocol achieves, on average, better results compared to the stan-
dard protocol. Both protocols perform far better then selecting a model at random. It can also be
observed that the impact of using synthetic data is greater when the training dataset is smaller. This
result is aligned with Corollary 2.1, as ∆εs is larger. Appendix B presents an extensive breakdown
of the experiment. A key finding from the breakdown is that ranking models using synthetic data is
comparable to ranking models using validation data in terms of Spearman correlation to a test set.

4 CONCLUSION

In this paper we presented a comprehensive empirical study on the CIFAR10 dataset for evaluating
the impact of using synthetic data for model selection. The empirical evidence suggest that evalu-
ating trained models on synthetic data can be beneficial and outperform the standard methods for
model selection that are based solely on the available real images.
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Figure 3: Ω decomposition: Venn diagram illustrating the decomposition of the sample domain
into various sections.

A THEORETICAL JUSTIFICATION

In this section we derive the theoretical justification leading up to Corollary 2.1.

Lemma A.1. Let ∆ε denote the risk difference between two hypotheses, h1, h2 ∈ H, mea-
sured over a probability distribution D = 〈Ω, µ〉, i.e., ∆ε = ε(h2) − ε(h1). Let f de-
note the labeling function. Let Ω1 = {x ∈ Ω|h1(x) 6= h2(x) ∧ h1(x) 6= f(x)} and Ω2 =
{x ∈ Ω|h1(x) 6= h2(x) ∧ h2(x) 6= f(x)}. Then,

∆ε =

∫
Ω2

µ(x)dx−
∫

Ω1

µ(x)dx.

Proof.

∆ε = ε(h2)− ε(h1)

= Ex∼D[h2(x) 6= f(x)]− Ex∼D[h1(x) 6= f(x)]

= Ex∼D[h2(x) 6= f(x) ∧ h2(x) 6= h1(x)] + Ex∼D[h2(x) 6= f(x) ∧ h2(x) = h1(x)]

− Ex∼D[h1(x) 6= f(x) ∧ h2(x) 6= h1(x)]− Ex∼D[h1(x) 6= f(x) ∧ h2(x) = h1(x)]

= Ex∼D[h2(x) 6= f(x) ∧ h2(x) 6= h1(x)]− Ex∼D[h1(x) 6= f(x) ∧ h2(x) 6= h1(x)]

=

∫
Ω2

µ(x)dx−
∫

Ω1

µ(x)dx

Theorem A.2. Let ∆εr and ∆εs denote the risk difference between two hypotheses, h1, h2 ∈ H,
measured over the real and the synthetic probability distributions Dr = (Ω, µr) and Ds = (Ω, µs),
respectively. I.e., ∆εr = εr(h2) − εr(h1) and ∆εs = εs(h2) − εs(h1). Let f denote the labeling
function. Let δh1⊕h2\f (µr, µs) denote the total variation between the two distributions in the sample
subspace of Ω in which the two hypotheses disagree with f(x) and between themselves. If ∆εs ≥
δh1⊕h2\f (µr, µs), then ∆εr ≥ 0.
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Proof.

∆εr =

∫
Ω2

µr(x)dx−
∫

Ω1

µr(x)dx

= ∆εs + (

∫
Ω2

µr(x)dx−
∫

Ω1

µr(x)dx−∆εs)

= ∆εs + (

∫
Ω2

µr(x)dx−
∫

Ω1

µr(x)−
∫

Ω2

µs(x)dx +

∫
Ω1

µs(x)dx)

= ∆εs + (

∫
Ω2

µr(x)− µs(x)dx−
∫

Ω1

µr(x)− µs(x)dx)

≥ ∆εs − (

∫
Ω2

|µr(x)− µs(x)|dx +

∫
Ω1

|µr(x)− µs(x)|dx)

= ∆εs −
∫

Ω1∪Ω2

|µr(x)− µs(x)|dx

= ∆εs − δh1⊕h2\f (µr, µs)

Corollary A.3. Let Dr = 〈Ω, µr〉 and Ds = 〈Ω, µs〉, denote the real and the synthetic (generated)
probabilistic distributions, respectively. Let ∆εr and ∆εs denote the risk difference between any
two hypotheses, h1, h2 ∈ H. Then,

∆εs −∆εr ≤ δ(µr, µs),

where δ(µr, µs) denotes the total variation between the two distributions.
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Figure 4: Synthetic data for architecture hyper-parameter search: (1st row) Each point repre-
sents the test error (x-axis) and validation/synthetic set error (y-axis) of a specific model. “Entire”
corresponds to models that were trained on the entire dataset (Train50K, Train30K, Train10K).
“Subset” corresponds to models that were trained on the training subset. (2nd row) Spearman cor-
relation between the validation/synthetic set errors and the test set errors. (3rd row) Yellow bars
represent the 10 architectures that performed the best (average of 10 training runs) on the validation
set (ranked from the best to 10th best). Orange bars represent the same architectures, trained on
the entire dataset and there performance (average of 10 training runs) on the test set. Black lines
represents the 95% confidence interval. (4th row) The points in the first column, “Syn”, correspond
to the test errors of the 10 best performing models selected using the synthetic protocol. The rest
of the columns (1st-10th) correspond to the test error results of all trained models out of the 10 best
architectures selected by the standard protocol (same architectures as row 3). Horizontal lines repre-
sent average test error rates of: 10 best synthetic models (Avg synth), average of the 10 best models
selected by the standard protocol (Avg standard), and the average of all 640 models (Avg all).

B SYNTHETIC DATA FOR ARCHITECTURE HYPER-PARAMETER SEARCH

In this experiment we explore the contribution of synthetic data for model selection out of a pool of
different architectures. Given a training set and a held-out test set (not available for model selection),
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we compared the three model selection protocols (selecting a random network, standard protocol,
synthetic protocol). The standard protocol requires a validation set, to this end we split each of
the datasets (Train50K, Train30K, Train10K) into training and validation subsets. For the synthetic
protocol a GAN was trained on each dataset to produce a dataset of 100K synthetic images (see
Appendix F):

1. Train10K: The train/val split is 7.5K/2.5K. For the synthetic data protocol, a single
StyleGAN2-Cond model trained on the 10K available images was used.

2. Train30K: The train/val split is 22.5K/7.5K. For the synthetic data protocol, 10 Style-
GAN2 models were trained, each on the 3K (per class) available images.

3. Train50K: The train/val split is 40K/10K. For the synthetic data protocol, 10 StyleGAN2
models were trained, each on the 5K (per class) available images.

In each experiment 64 architectures were evaluated using the different protocols. For generating
similar architectures, we sampled RWNN architectures with the same parameters WS(2, 0.25) (same
architectures as in 3.2.2). In both the standard and synthetic protocols we trained each architecture
10 times. For the standard protocol we train on the training subset (step 1) and for the synthetic
protocol we use the entire dataset. Note that for the standard protocol, it is not possible to select a
model instance out of the 10 trained instances of each architecture that was trained on the entire data
(step 3). Therefore, we use the average test error of the 10 trained models of each architecture (on
the entire dataset) as a data point for comparisons.

Figure 4 shows different analyses of the experimental results. From the first two rows of the figure
we can infer that there is a strong correlation between the error on synthetic data, ε̂s, and the error
on the test set, ε̂r. We evaluate this correlation using Spearman’s rank correlation coefficient, as it is
appropriate for measuring rank preservation. From the Spearman correlation plot (second row) we
learn that the ranking capability of the synthetic data is comparable to that of the real data validation
set. This strengthens our premise that using synthetic data for model selection is appropriate. It can
be seen that the correlation improves when the training set is smaller and the errors are larger. This
result coincides with Corollary 2.1 where for larger gaps in synthetic error, there is a lower chance
for a flip in model ranking. From the third row we can infer that the ranking of architectures might
change when moving from training on a smaller training set and evaluating on a validation set to
training on the entire dataset end evaluating on the test set. This implies that a potential gain in
accuracy could be achieved by selecting a model out of the models that were directly trained on the
entire dataset. From the last row we can learn that, on average, model selection using synthetic data
improves over the standard method. Again, the impact of synthetic data increases as the training
dataset size decreases. Given that a synthetic dataset is available, training the models directly on the
entire dataset is simpler than training on a subset and re-training on the entire dataset.
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C ADDITIONAL RESULTS FOR EARLY STOPPING AND RANDOM SEED
SELECTION ON STANDARD ARCHITECTURES

In addition to the results reported in 3.2.1, Figure 5 shows results of ES, RSS and RSS+ES on all
three datasets. RSS is beneficial for model selection in most cases, however the benefits decrease as
the dataset size increases.

Tr
ai

n1
0K

Tr
ai

n3
0K

Tr
ai

n5
0K

Figure 5: ES and RSS for model selection (standard architectures) on all datasets: Test errors
of 17 architectures trained on each of the datasets. “Last epoch” and ES show the average error of
the 10 models for each architecture. RSS and RSS+ES show the results of the selected model out of
the 10 models.
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D STANDARD ARCHITECTURE CONVERGENCE IN TRAINING

Figure 6 shows two examples of the train, test and synthetic data errors vs. epoch index during
training on the Train50K dataset. It can be observed that although the synthetic data error does not
match the test error exactly, it follows the same trend as the test error. In the last epochs of training,
where the learning rate has decreased there is very little change in the model’s error. This may
explain why the early stopping experiments did not demonstrate any benefits.

ResNet110 (Architecture 17 in Appendix E)

Shake-Shake 64 + cutout (Architecture 10 in Appendix E)

Figure 6: Train, test and synthetic data error vs. epoch
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E STANDARD ARCHITECTURES DESCRIPTION

Below is the list of architectures used in Sections 3.1 and 3.2.1:

1. DenseNet : (Huang et al., 2017; 2019) with batch size 32, initial learning rate 0.05, depth
100, block type “bottleneck”, growth rate 12, compression rate 0.5.

2. PyramidNet 270: (Han et al., 2017) with depth 110, block type “basic”, α = 270.
3. PyramidNet 84: (Han et al., 2017) with depth 110, block type “basic”, α = 84.
4. SE-ResNet-preact: (Hu et al., 2019) with depth 110, se reduction=16.
5. ResNet-preact 110: (He et al., 2016b) with depth 110, block type “basic”.
6. ResNet-preact 164: (He et al., 2016b) with depth 164, block type “bottleneck”.
7. ResNext 4x64d: (Xie et al., 2016) with depth 29, cardinality 4, base channels 64, batch

size 32 and initial learning rate 0.025.
8. ResNext 8x64d: (Xie et al., 2016) with depth 29, cardinality 8, base channels 64, batch

size 64 and initial learning rate 0.05.
9. Shake-shake 32d: (Gastaldi, 2017) with depth 26, base channels 32, S-S-I model.

10. Shake-shake 64d: (Gastaldi, 2017) with depth 26, base channels 64, S-S-I model, batch
size 64, base lr = 0.1 .

11. Shake-shake 64d + cutout: (Gastaldi, 2017) with depth 26, base channels 64, S-S-I
model, batch size 64, lr = 0.1, cosine scheduler, cutout (DeVries & Taylor, 2017) size 16.

12. Wide residual network + cutout: (Zagoruyko & Komodakis, 2016) with depth 28, widen-
ing factor 10, base lr = 0.1, batch size 64, cosine scheduler, cutout (DeVries & Taylor,
2017) size 16.

13. Wide residual network: (Zagoruyko & Komodakis, 2016) with depth 28, widening factor
10.

14. ResNet 32: (He et al., 2016a) with depth 32, block type “basic”.
15. ResNet 44: (He et al., 2016a) with depth 44, block type “basic”.
16. ResNet 56: (He et al., 2016a) with depth 56, block type “basic”.
17. ResNet 110: (He et al., 2016a) with depth 110, block type “basic”.
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F SYNTHETIC DATA GENERATION DETAILS

Our method for producing synthetic datasets is based on training GANs that in turn are used to
generate the desired labeled data. We consider two GAN frameworks for generating our synthetic
datasets:

1. StyleGAN2 (Karras et al., 2019) with non-leaking augmentation (Karras et al., 2020). This
framework is our best candidate for generating high quality synthetic datasets since it is the
SOTA for generating CIFAR10 images.

2. WGAN-GP (Gulrajani et al., 2017). This framework generates lower quality images than
StyleGAN2. We consider it as a baseline to explore how the image quality impacts the
datasets models selection capabilities.

For each GAN framework we consider two variants of training the GANs to generate labeled
datasets:

1. Training 10 GANs (StyleGAN2-10/WGAN-GP-10): For each of the 10 CIFAR10
classes, a different GAN was trained with just one class at a time (e.g., 5K images for
Train50K, 3K images for Train30K and 1K images for Train10K). The generator instance
with the best FID (Heusel et al., 2017) score out of all instances obtained during training
was selected to generate 10K images of its corresponding class.

2. Training one Conditional GAN (StyleGAN2-Cond/WGAN-GP-Cond): A single
Conditional-GAN was trained, and best instance selected by FID score. Thereafter, 10K
images were generated per class.

Using the above methods we constructed 8 datasets (each with 100K labeled images): three
“StyleGAN2-10” datasets and three “StyleGAN2-Cond” datasets (one per CIFAR10 subset), one
“WGAN-GP-10” dataset and one “WGAN-GP-Cond” dataset (for the Train50K CIFAR10 subset).

Table 3 shows the FID scores breakdown for our synthetic datasets. As expected, as the training
dataset size decreases the FID score increases.

Figures 7 and 8 show samples of real CIFAR10 images and our synthetic StyleGAN2-based datasets
for each of the CIAFR10 classes.

Synth dataset Class Train50K Train30K Train10K

StyleGAN2-10

0 10.11 17.06 44.15
1 6.05 9.41 29.91
2 10.65 16.39 49.79
3 12.04 18.58 56.67
4 7.94 12.5 35.76
5 11.23 16.98 51.15
6 8.36 13.22 39.84
7 8.41 12.91 31.57
8 7.59 11.02 32.2
9 6.25 10.26 28.33

All 4.4 4.86 14.15
StyleGAN2-Cond All 4.4 6.25 11.72
WGAN-GP-10 All 35.7 N/A N/A
WGAN-GP-Cond All 27.3 N/A N/A

Table 3: FID scores (↓) breakdown

14



Workshop on Synthetic Data Generation at ICLR 2021

Real Train50K Train30K Train10K

Figure 7: Real images vs. StyleGAN2-10 datasets
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Real Train50K Train30K Train10K

Figure 8: Real images vs. StyleGAN2-Cond datasets
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