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ABSTRACT

Generative modeling has been used frequently in synthetic data generation. Fair-
ness and privacy are two big concerns for synthetic data. Although Recent GAN
[Goodfellow et al. (2014)] based methods show good results in preserving pri-
vacy, the generated data may be more biased. At the same time, these methods
require high computation resources. In this work, We design a fast, fair, flexible
and private data generation method. We show the effectiveness of our method
theoretically and empirically. We show that models trained on data generated by
the proposed method can perform well (in inference stage) on real application
scenarios.

1 INTRODUCTION

Synthetic data [Rubin] is data that is artificially created rather than being generated by actual events.
The availability of large synthetic data can bring many collaboration opportunities between related
industries and research community. Synthetic data has been valuable to business functions, such as
health [Hwang et al. (2020)], robotics [Duczek et al. (2021)], and financial services [Samuel Assefa
& Manuela Veloso1]. However, personnel related synthetic data is rarely available online. [Rich
(2020)]

There are two reasons. First, personal information is very sensitive. [Navaz et al. (2013)] Any poten-
tial leakage of personal information is harmful. Recent work shows that machine learning models are
highly susceptible to leak information from their training data [Reza Shokri & Shmatikov. (2017)].
If attackers have some real data, they are able to distinguish synthetic data from real data with
high accuracy. [Choquette-Choo et al. (2021)] Second, models trained on biased data have different
predictive power across protected groups, such as race or gender. Bringing equal opportunity to
protected groups is essential for synthetic data, as noted in [Bolukbasi et al. (2016) Joy Buolamwini
(2018)]. Many methods [Donini et al. (2020) Zafar et al. (2017) Zafar et al. (2019) Hardt et al.
(2016) Woodworth et al. (2017) ] have been provided to mitigate bias during model training or post
model training. However, [Agarwal Rachel Cummings (2019)] prove that there is no algorithm that
is private, fair and better than a constant classifier. The proof relies on that test data distribution can
be very different. Thus, we attempt to make datasets fair and private before training any machine
learning methods.

In this work, we propose a fast, fair, and private data generation method (FFPDG). Our algorithm can
be used in supervised and unsupervised modeling applications. Our algorithm is fast since it has low
run time complexity. We show that our algorithm has good fairness guarantee through experiments
and mathematical proof. We show that our method preserves privacy under certain conditions.

2 RELATED WORK

2.1 PRIVATE DATA GENERATION

[Feldman et al. (2015)] shows that removing personal information does not protect privacy. A pri-
vacy preserving dataset does not change outcome very much by inclusion or exclusion of a particular
example.
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Definition 1(Differencial Privacy). A mechanism A on a query functions f is ✏-differentially private
if for all neighboring datasets X , X

0
which differ in a single record and for all possible measurement

S ✓ R, Pr[A(f(X))2S]
Pr[A(f(X0))2S]  exp(✏) [Cynthia Dwork & Naor (2006)]

Differentially Private Stochastic Gradient Descent (DP-SGD) [Abadi et al. (2016)] is one of the
first studies to make the Stochatic Gradient Descent computation differential private. It preserves
differential privacy by clipping the gradient in the optimization’s l2 norm and adding noise.

Private Aggregation of Teach Ensembles (PATE)[Papernot et al. (2017) Papernot et al. (2018)]deploy
multiple teacher models which trained by disjoint datasets. PATE then deploy the teach models to
unseen data to make predictions. For unseen data, the teacher models vote to determine the label
combining random noise generated by laplace distribution. PATE further trains student model by
only accessing to the privatized labels generated from the teacher’s vote. Student cannot relearn an
individual teacher’s model as teacher is trained on disjoint datasets with laplacian noise.

Generative Adversarial Network and Variational Autoencoders [Kingma & Welling (2014)] provide
powerful methods to generate synthetic data using real data but they do not provide any privacy
guarantee. These generation methods can combine with differentially private methods to achieve
better privacy guarantee for generated data.

DPGAN [Xie et al. (2018)] proposes a framework for modifying the GAN [Goodfellow et al. (2014)]
framework to be differentially private, which relies on the PostProcessing Theorem [Dwork & Roth
(2014)] by learning a differentially private discriminator during training.

PATE-GAN [Yoon et al. (2019)] modifies PATE framework to apply to GANs by applying PATE
mechanism to the discriminator. The dataset is first partitioned into k subsets to train k teachers.
Each teacher is trained by discrimination between generated data by generator and a disjoint subset
of original data. The student discriminator is trained by voting from teachers result plus laplacian
noise. At the end, the generator is trained to fool the student discriminator.

Random OrthoNormal projection with GAUSSian generative model(RON-Gauss) [Chanyaswad
(2019)] combines dimension reduction via random orthonormal projection and the Gaussian gen-
erative model for synthesizing differential private data. They are inspired by Diaconis-Freedman-
Meckes (DFM) effect [Meckes (2012)] which shows that under suitable conditions, most projections
of high dimensional data are nearly Gaussian. The data was generated by a process of normalization,
random projection and gaussian modeling. Noise is added in the data normalization and gaussian
model stages.

2.2 FAIR PROCESSING

We first give definition of Disparate Impact [Barocas & Narayanan (2018)], Equal Opportu-
nity[Heidari et al. (2018)] and Statistical Disparity.

Definition 2(Disparate Impact). Given data set D = (X,Y,C) with binary protected attribute C
(e.g. race, sex, religion, etc, 0 is unprivileged group and 1 is privileged group), remaining attributes
X and binary class to be predicted Y, we will say that C has disparate impact if Pr(Y=1|C=0)

Pr(Y=1|C=1)  0.8.

Definition 3(Equal Opportunity/Equality of Odds) requires equal True Positive Rate(TPR) across
subgroups: P (Y

0
= 1|Y = 1, C = 0) = P (Y

0
= 1|Y = 1, C = 1) where Y

0
is the model output.

Definition 4(Statistical Parity) requires positive predictions to be unaffected by the value of the
protected attribute, regardless of true label P (Y

0
= 1|C = 0) = P (Y

0
= 1|C = 1)

Another common definition is individual fairness, which means that people who are similar with
respect to the task should be given similar predictions or decisions.

Definition 5(Individual Fairness). IF f : Rn ! R is a decision model, given appropriate distance
functions - d(., .) on R

n (the domain of f) and D(., .) on R (the co-domain of f) - as well as threshold
✏ � 0 and � � 0, the model is individually fair if, for any pair of inputs x, x

0
such that d(x, x

0
)  ✏,

we have D(f(x), f(x0))  � [Dwork et al. (2011b)]

We can remove bias during data generation or during the downstream task. To address it from
downstream tasks, there are two categories: 1. inprocessing methods [Donini et al. (2020) Zafar et al.
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(2017) Zafar et al. (2019) Perrone et al. (2021)] that change the objective function optimized during
training to include fairness constraints and 2. post-processing [Hardt et al. (2016) Woodworth et al.
(2017)] methods that modify the outcome of the existing models by changing decision boundary.
Some of these method such as [Jagielski et al. (2018)] preserve privacy and fairness. Our work
focuses on removing bias during data generation process and stronger privacy assumption.

Disparate impact remover (DIR) [Feldman et al. (2015)] creates a distribution for each protected
attribute. DIR then creates a median distribution over all distribution. The outcome variable is then
projected by median distribution. This method is rank preserving for samples from each protected
group.

Fair Max Entropy Distributions (FairMaxEnt) [Celis et al. (2020)] is a maximum entropy based
approach to eliminate bias from data. The method uses priors and marginal vector to constrain on
statistical rate [Feldman et al. (2015)] and representation rate [Hardt et al. (2016)] of the generated
data. Then, it solves dual of the max-entrophy framework to optimize data distribution. This method
is faster than methods such as [Calmon et al. (2017)]. However, this method does not consider
individual fairness and only works for binary data.

3 METHODOLOGY

In our proposed method, we first use FairMaxEnt to create unbiased data and then use RON-Gauss
to generate private data.(See Algorithm 1)

For step 2, we use discretization methods suggested in the original paper from [Celis et al. (2020)].
For step 1 and 3, we use a dictionary to store the mappings from binary data to original data. For
step 4,we use the same preprocessing methods described in [Xu & Veeramachaneni (2018)] for cat-
egorical features. After data generation, we map binary features to original datasets by uniformly
sampling from mappings. Since FairMaxEnt is a distribution over the domain rather than reweight-
ing, some generated data does not have mapping to original datasets. We then sample data from the
closest mappings. For step 7, we randomly sample matrix and use QR factorization [Trefethen &
Bau (1997)] to get W. For step 8, we use normal distribution as generative model for unsupervised
and continuous outcome variable. We can use Gaussian Mixture Model [Amendola et al. (2016)]
to generate data for categorical outcome variable. Thus, our method is flexible since it can be used
in regression, classification and unsupervised settings. For step 9, our study uses training data per-
centile as threshold to map continuous data back to binary/categorical features and we also restrict
continuous data to range of the minimum and maximum from the original data.

Algorithm 1: Fast, Fair and Private Data Generation
Data: dataset X 2 R

d⇥n, dimensions p < d, and ✏µ, ✏
P

> 0
Result: xDP

1 , .... xDP
n0

Step 1: Create a dictionary D to map data X to binary data B;
Step 2: Obtain the fair processed data B

0
from FairMaxEnt with inputs B;

Step 3: Map B
0

back to X using nearest neighbor in D and uniform sampling;
Step 4: Pre-normalize: change categorical feature to one hot encoding plus white noise and
xi :=

xi
kxik for all xi 2 X;

Step 5: Center the data: X̄ = X � µ
DP 1T where µ

DP = ( 1n
Pn

i=1 xi) + Z and zj(i) is drawn
i.i.d from Lap(2

p
d/n✏µ) ;

Step 6: Re-normalize: x̄i = x̄i/kx̄ik for all x̄i 2 X̄ .;
Step 7: Construct a RON projection matrix W = [q1, ...qp] 2 R

d⇥p and project the data
X

0 = W
T
X̄ 2 R

p⇥n.;
Step 8: Draw synthetic data x

DP
i 2 R

p from N(0,
PDP ) where

PDP = ( 1nX
0
X

0T ) + Z and
zj(i) is drawn i.i.d from lap(2

p
p/n✏

P).;
Step 9: Project it back to original space using W and transform it to original data format.

The proposed method is fast. Suppose d is the dimension of data and n is the number of samples
in the data and the number of data FFPDG generates. Step 1 runs in time nd. Step 2 runs in time
polynomial in d, n and the bit complexity of the input parameters. (See Appendix D.3 in [Celis et al.
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(2020)]). Step 3 runs in time n
2 as identifying nearest neighbor runs in time N at most. Step 4 to 6

runs in time nd. Steps 7 runs in time nd2 as projected dimension is smaller than real dimension and
QR decomposition runs in d

3. Steps 8 runs in time n
2
d and step 9 runs in time n. Thus, the whole

algorithm runs in time polynomial in d
3, n2 and the bit complexity of the input parameters. If we

want to generate data from extreme large data set, this method is faster and more computationally
efficient than GAN based methods.

The proposed method is differentially private under some conditions. For step 1-4, data is generated
by using KL divergence [Shlens (2014)] framework. The resulting posterior is robust in terms of KL-
divergence to small changes in the data.(See Theorem 1 in Appendix). The generated samples are
differential private under lipschitz continuity assumption.(See Theorem 2 in Appendix). Thus, till
this step, our method is 2L-differentially private where L is mentioned in Appendix B Assumption
1. For step 5-8, it is approved by [Chanyaswad (2019)] that it is (✏µ + ✏

P)-differentially private.
According to serial composition theorem from [Agrawal M. (2008)], if we can find L, our method is
(2L+ ✏µ + ✏

P)-differentially private. We inject noise in different part of process such as sampling,
data normalizing and data generation. Even if attackers know the whole generation process, it is
almost impossible for them to estimate most parameters accurately.

Our method preserves group fairness. FairMaxEnt preserve both fairness constraints. While a few
studies [Dwork & Mulligan (2013) Michael D Ekstrand & Mehrpouyan. (2018) Satya Kuppam &
Miklau (2019)] argue that differentially private algorithms make unfair decisions, the datasets used
in their study are not fair. We do not find evidence that shows that differentially private algorithm
make unfair decision on fair dataset.

Our method preserves individual fairness with enough samples in regression settings . For step 1-4,
we only sample data from previous distribution which preserves individual fairness. For step 5-7,
after normalization and RON projection, we prove that the distance between different data point is
getting closer. (See Theorem 3 in Appendix for proof) For step 8, we show that when outcome
variable is generated by linear combination of feature space plus noise, sample generated from this
model converge to data generation space as sample size goes to infinity. (See Theorem 4 in Appendix
for proof). To summarize, our generated method only generate data that is closed to original data
space.

4 METRIC AND EXPERIMENT

4.1 METRIC

AUCROC[Yoon et al. (2019)]: We train few models on generated data. Then, we test those mod-
els on real data and use area under the receiver operating characteristics curve(AUCROC) as our
metric. If we saw high AUCROC on the real data for models that were trained on synthetic data,
we can infer that synthetic data has captured the relationship between features and labels well.
These synthetic data can be used to train models without ever seeing the real data. To have a sta-
ble result, we choose best AUCROC performance among models that include logistic regression,
Random Forest[Breiman], Neural Network, Gaussian Naive Bayes[Rish (2001)], Gradient Boosting
Classifier[Friedman], Bernoulli Naive Bayes, Decision Tree and Linear Discriminant Analysis.

DEO/DSP: Y
0

is the predicted value of outcome variable. Difference in equal opportunity DEO
(|P (Y

0
= 1|Y = 1, C = 0) � P (Y

0
= 1|Y = 1, C = 1)|) and Difference in statistical parity

DSP (|P (Y
0
= 1|C = 0) � P (Y

0
= 1|C = 1)|) (Note that DSP also called Demographics Parity

Difference (DPD) [Zafar et al. (2017)]) [Perrone et al. (2021)] are two measures we use to evaluate
group fairness of the generated result. We use logistic regression , Random Forest, Neural Network,
Gaussian Naive Bayes, Gradient Boosting Classifier, Bernoulli Naive Bayes, Decision TreeQuinlan
and Linear Discriminant Analysis and choose the average of them as default models to predict Y bar.
(For other metric, you can look at [Dwork et al. (2011b)] )

LRD: We build a logistic regression classifier that learns to tell the synthetic data apart from the
real data (LRD), which later on is evaluated using cross validation. The output of the metric is one
minus the average AUCROC score obtained. The higher the score, the harder it is for the model to
distinguish real data from synthetic data. We use this metric to understand if the generated data is
robust against adversarial attacks such as membership inference attack.
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4.2 HYPERPARAMETER TUNING

We set epsilon equals to 1 for differential privacy. We choose repair level for DIR equal to 1. We
choose smooth factor equals to 0.1 and error parameter equal to 0 for FairMaxEnt. We choose �

equals to 2, clip coefficient equals to 0.1, micro batch size equals to 8, number of epochs equals to
500 and batch size equals to 64 for DPGAN. Number of teacher equals to 10, teacher and student
iterations equal 5, number of moments equal to 100 for PATEGAN. For RON-Gauss, we set ✏µ to be
30 percent of ✏ and ✏

P to be 70 percent of ✏. All experiments are run on AWS with ml.p2.16xlarge.

4.3 EXPERIMENT

The Adult [Dua & Graff (2017)] dataset contains demographic information of individuals along
with a binary label of whether their annual income is greater than 50k. In our analysis we include
attributes race (white VS non white), sex, age and education years. We use gender as the protected
attribute.

The COMPAS [Barenstein (2019)] dataset contains information on criminal defendants at the time
of trial, along with post-trail instances of recidivism. We include attributes such as sex, race, priors
count and charge degree as features. We use gender as the protected attribute.

We first study whether we should put fair processing first or private data generation first. Our finding
is that if we put fair processing after private data generation, it becomes harder to decrease DSP
and increase AUCROC. Although more experiments may be needed to see if this result can be
generalized, we recommend that fair processing occurs before private data generation. Private data
generation relies on adding noise in labeling or training process. If data has many outliers, this
private generated data may exaggerate these outliers and generate more noisy data. Fair processing
method such as FairMaxEnt can mitigate the influence of outliers by projecting feature space to
binary and fitting a distribution.

AUCROC DP WGAN PATE GAN RON GAUSS
FairMaxEnt First 0.62 0.75 0.76
FairMaxEnt Last 0.53 0.72 0.74

Table 1: Compare pre/post fair processing influence AUCROC

DSP DP WGAN PATE GAN RON GAUSS
FairMaxEnt First 0.07 0.11 0.07
FairMaxEnt Last 0.22 0.16 0.40

Table 2: Compare pre/post fair processing influence DSP

Then, we compare our result with combinations of reweight[Kamiran & Calders
(2012)]/DIR/FairMaxEnt as fair processing and DPWGAN/PATE-GAN/RON-Gauss as pri-
vate data generation methods. Code we used: [bor (2019) Bellamy et al. (2018) vij (2020) Patki
et al. (2016)]

We also compare the speed of our method with others. We choose the fastest DPWGAN and PATE-
GAN based method. We then compare them with FFPDG on COMPAS and Adult dataset. We can
see that FFPDG is much faster than GAN based methods.

Dataset FairMaxEnt + DPWGAN reweight + PATEGAN FFPDG
COMPAS 36 seconds 29 minutes 1 seconds

Adult 47 seconds 29 minutes 1 seconds

Table 3: Compare pre/post fair processing influence DSP

Based on our experiment, our proposed method achieves good AUCROC while maintains the highest
LRD and lowest DSP. (See table 3 and 4 in appendix for full results) We run the same experiment
on COMPAS dataset[Barenstein (2019)] and see similar result but with relatively lower AUCROC.
High AUCROC means data generated by our method has good predictability power on real data.
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High LRD means that our generated data is hard to distinguish from real data. Low DSP shows that
our method preserves group fairness. In general, FairMaxEnt performs better in DSP compare to
all other fair processing methods. RON-Gauss performs better in LRD compare to DPWGAN and
PATEGAN.

Figure 1: Comparison of different methods in Adult data set

Figure 2: Comparison of different methods in COMPAS data set

5 LIMITATIONS AND CONCLUSIONS

5.1 LIMITATIONS

Although, DFM shows that data can be projected to low dimensional Gaussian distribution. It
becomes harder to find good projection with categorical data and increase of dimensions. We see the
predictability on real data decreases as dimensions or categorical features increase. We may need to
change step 8 in our proposed method for better data generation on high dimensional data.

LRD is very low for almost all private preserved generated data. We further study methods such as
CTGAN[Xu et al. (2019)] and Copula GAN[Kamthe et al. (2021)] using Adult dataset to see if this
result can be generalized for other data generation technique. The result shows that for the same
procedure, the LRD for them are 0.6 and 0.79. However, if we use the same post processing such as
capping by max and min and changing continous data back to binary/categorical features. The LRD
drops to 0.19 and 0.15. To make our method scale, better postprocessing method for categorical
feature is needed.

Our method does not inference well on dataset that is biased. Our method make data unbiased. If
test data is hugely biased, distribution shift may occur between generated data and test data. Model
trained on these generated data may not inference well on biased test data.

5.2 CONCLUSION

To conclude, we design a method to generate fair and unbiased data. The method of data generation
has the following benefits: It is flexible and fast, the data created can produce models that perform
well in real datasets, robust to membership inference attack and preserve individual/group fairness.
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There are few directions of future study: (1) Make our algorithm scale to high dimensional datasets.
(2) Find a better method to process categorical features. (3) Merge fair processing and private data
generation into one step.
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Nicolas Papernot, Martı́n Abadi, Úlfar Erlingsson, Ian Goodfellow, and Kunal Talwar. Semi-
supervised knowledge transfer for deep learning from private training data, 2017.

Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Úlfar Er-
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A TABLES

A.1 RESULTS FROM COMPAS

Metric Original Data DPWGAN PATEGAN RON GAUSS
No Preprocessing AUCROC 0.84 0.52 0.75 0.71
No Preprocessing DEO 0.39 0.24 0.16 0.51
No Preprocessing DSP 0.13 0.12 0.08 0.21
No Preprocessing LRD 0.99 0.16 0.12 0.18

REWEIGHT AUCROC 0.83 0.78 0.65 0.79
REWEIGHT DEO 0.41 0.20 0.01 0.16
REWEIGHT DSP 0.13 0.08 0.18 0.07
REWEIGHT LRD 0.99 0.19 0.08 0.13

DIR AUCROC 0.83 0.67 0.64 0.77
DIR DEO 0.41 0.02 0.01 0.32
DIR DSP 0.13 0.11 0.20 0.11
DIR LRD 0.99 0.18 0.14 0.16

FairMaxEnt AUCROC 0.81 0.62 0.75 0.76
FairMaxEnt DEO 0.06 0.07 0.12 0.07
FairMaxEnt DSP 0.12 0.07 0.20 0.05
FairMaxEnt LRD 0.82 0.19 0.06 0.22

Table 4: Model performance with different metric for combination of fair preprocessing and private
data generation for Adult data

Metric Original Data DPWGAN PATEGAN RON GAUSS
No Preprocessing AUCROC 0.74 0.63 0.73 0.66
No Preprocessing DEO 0.38 0.09 0.06 0.08
No Preprocessing DSP 0.01 0.04 0.04 0.05
No Preprocessing LRD 0.99 0.33 0.33 0.24

REWEIGHT AUCROC 0.73 0.58 0.48 0.68
REWEIGHT DEO 0.38 0.10 0.31 0.06
REWEIGHT DSP 0.01 0.07 0.05 0.02
REWEIGHT LRD 0.98 0.19 0.23 0.32

DIR AUCROC 0.73 0.66 0.48 0.55
DIR DEO 0.36 0.18 0.08 0.17
DIR DSP 0.01 0.06 0.04 0.04
DIR LRD 0.89 0.22 0.20 0.23

FairMaxEnt AUCROC 0.73 0.73 0.61 0.66
FairMaxEnt DEO 0.06 0.19 0.08 0.08
FairMaxEnt DSP 0.02 0.02 0.05 0.04
FairMaxEnt LRD 0.68 0.39 0.36 0.60

Table 5: Model performance with different metric for combination of fair preprocessing and private
data generation for COMPAS data
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B THEOREM

Assumption 1 (Individual Bias) f : Rn ! R said to be individually biased if there exists a pair
of valid inputs x and x

0
, with |f(x) � f(x

0
)| > �, such that |xi � x

0

i|  ✏jfor all i 2 Sj , and for
all j = 1, ..., t. Such a pair (x, x

0
) is called an individual bias instance of the model f . [John et al.

(2020) Kleinberg et al. (2016)]

Assumption 1 (Lipschitz continuity) Let f(x, ✓) = ln p✓(x) be the log probability of x under ✓.
⇢ : S ⇥ S ! R+ is the pesudo distance metric. The Lipschitz constant for a parameter value ✓ is
l(✓) = inf{µ : |f(x, ✓) � f(y, ✓)|  µ⇢(x, y)8x, y 2 S}. We assume there exist some L < 1
such that:

l(✓)  L, ✓ 2 ⇥

[Dimitrakakis et al. (2017)]

Theorem 1 When ⇠ is a prior distribution on ⇥ and ⇠(·|x) and ⇠(·|y) are the respective posterior
distribution for data sets x, y 2 S, under a peseudi-metric ⇢ and L > 0 satisfying Assumption 1,

D(⇠(·|x)k⇠(·|y))  2L⇢(x, y)

[Dimitrakakis et al. (2017)]

Theorem 2 Under a pseudo-metric ⇢ and L > 0 satisfying Assumption 1, for all x, y 2 S, B 2 �✓:

⇠(B|x)  exp{2L⇢(x, y)}⇠(B|y)

(This means posterior ⇠ is (2L, 0)-differentially private under pseudo-metric ⇢) [Dimitrakakis et al.
(2017)]

Theorem 3 for 8x1, x2 2 D, if zi = zj , then kf(xi)� f(xj)kF < kxi�xjkF where zi, zj is noise
drawn from laplacian noise and f represent step 5-7. W is ron projection and µ is the average from
normalization.

Proof: Since we assume zi = zj , ui =
1
n

Pn
i=1(xi) + zi =

1
n

Pn
i=1(xi) + zj = uj

kf(xi)� f(xj)kF = kWT (xi � µi)�W
T (xj � µj)kF

= kWT (xi � xj)kF

=
q
tr((xi � xj)TWWT (xi � xj))

=
q
tr((xi � xj)TWWTWWT (xi � xj))

[This is because W
T
W = I]

= kWW
T (xi � xj)kF

[Let P = WW
T ]

= kP (xi � xj)kF
=< P (xi � xj), P (xi � xj) >F

=< P (xi � xj), (xi � xj) >F

[Consider x0 = x � Px, < Px, x >F=< Px, x
0 + Px >=< Px, Px >F + < Px, x

0
>F=<

Px, Px >F since Px ? x
0, < Px, x

0
>F= 0 ]

On the other hand, we have: kP (xi�xj)k2F =< P (xi�xj), (xi�xj) >2
F kP (xi�xj)kF k(xi�

xj)kF because of Cauchy-Schwarz inequality. This means kP (xi � xj)kF < k(xi � xj)kF Thus
we have kf(xi)� f(xj)kF = kP (xi � xj)kF < k(xi � xj)kF

Theorem 4 Suppose Y = X� + ✏, in regression settings,

xi

yi

�
2 R

p+1 by drawing samples from

N(0,


1
n (XX

T + Zx)
1
nX

T
Y

1
nY

T
X

1
n (Y Y

T + zy)

�
). kxik = 1 For simplicity, we assume Zx is positive

semidefinite diagnol matrix. Any none zero element in Z iid drawn from Lap((2
p
p + 4a

p
p +

11
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a
2)/

p
n✏

P). Then, the variance of y is less than 1
n✏

T
✏+ 1

n�
�1

ZX�+ zY and the distance between
y and X� is less than zmax�

T (XX
T )�1 where zmax is the largest absolute value in diagonal matrix

Z

Proof:
Avg(y|x) = 1

n
Y

T
X(

1

n
XX

T + Zx)
�1

x

[(A+B)�1 = A
�1 �A

�1
B(A+B)�1]

= Y
T
X((XX

T )�1 � (XX
T )�1

Zx(XX
T + Zx)

�1)x

 Y
T
X((XX

T )�1 � (XX
T )�1

Zx(XX
T )�1)x

= Y
T
X(XX

T )�1
x� Y

T
X(XX

T )�1
Zx(XX

T )�1
x

[� = (XT
X)�1

X
T
Y and (XT

X)�1T = (XT
X)�1]

= �
T
x� �

T
Zx(XX

T )�1
x

Since kxik = 1 and Zx is a diagonal matrix , Avg(y|x)� �
T
x  zmax�

T (XX
T )�1

V ar(y|x) = 1

n
(Y Y

T � Y
T
X(XT

X + ZX)�1(XT
Y )) + zY

[if ( x, y) is multivariate gaussian, where mean is 0 and variance is
P

11

P
12P

21

P
22

�
, then V ar(y|x) =

P
22 �

P
21

P�1
11

P
12]

(XT
X + Zx)

�1 = (XT
X)�1 � (XT

X)�1
Zx(X

T
X + Zx)

�1

� (XT
X)�1 � (XT

X)�1
Zx(X

T
X)�1

1

n
(Y T

Y � Y
T
X(XX

T + ZX)�1
X

T
Y ) + zY

 1

n
(Y T

Y � Y
T
X((XX

T )�1 � (XX
T )�1

Zx(XX
T )�1)XT

Y + zy

[H = X(XT
X)�1

X
T and H is symmetric and � = (XT

X)�1
X

T
Y ]

=
1

n
(Y T

Y � Y
T
HY + �

�1
ZX�) + zY

[Since H ⇤H = H , we have I �H = I �HH = I �H �H +HH = (I �H)(I �H) since I -
H is symmetric, I �H = (I �H)T (I �H)]

=
1

n
(Y T (I �H)T (I �H)Y + �

�1
ZX�) + zY

=
1

n
✏
T
✏+

1

n
�
�1

ZX� + zY

Thus, as n� > 1, zmax and zy go to 0, both difference and variance goes to 0. y|x convergence to
�
T
x in probability.

For the same setting as Theorem 4, our proposed method is not individually biased under definition
1 as sample goes to infinity. y—x is sampled from N(�T

x+ ✏,�), where ✏ and � go to 0. Thus, for
any samples such that |xi�x

0

i|  ✏j , we have |f(x)�f(x
0
)| ! �

T |x�x
0|  �max

Pt
j=1 ✏j where

�max is the largest absolute value in �. We can find constant C, as sample size goes to infinitiy,
|f(x) � f(x

0
)|  C + �max

Pt
j=1 ✏j . Thus, the difference of outcome variable is bounded. Our

analysis is based on definition 1. It may not hold in other definitions of individual bias.[Dwork et al.
(2011a) Dwork & Ilvento (2018) Kearns et al. (2019)]
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