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ABSTRACT

Few-shot classification addresses the challenge of classifying examples given only
limited labeled data. A powerful approach is to go beyond data augmentation,
towards data synthesis. However, most of data augmentation/synthesis methods
for few-shot classification are overly complex and sophisticated, e.g. training a
wGAN with multiple regularizers or training a network to transfer latent diversi-
ties from known to novel classes. We make two contributions, namely we show
that: (1) using a simple loss function is more than enough for training a feature
generator in the few-shot setting; and (2) learning to generate tensor features in-
stead of vector features is superior. Extensive experiments on miniImagenet, CUB
and CIFAR-FS datasets show that our method sets a new state of the art, outper-
forming more sophisticated few-shot data augmentation methods.

1 INTRODUCTION

Deep learning continuously keeps improving the state of the art in multiple different fields, such as
natural language understanding Mikolov et al. (2010) and computer vision Krizhevsky et al. (2012).
However, even though the success of deep learning models is undeniable, a fundamental limitation
is their dependence on large amounts of labeled data. This limitation inhibits the application of state
of the art deep learning methods to real-world problems, where the cost of annotating data is high
and data can be scarce, e.g. rare species classification.

To address this limitation, few-shot learning has attracted significant interest in recent years. One
of the most common lines of research is meta-learning, where training episodes mimic a few-shot
task by having a small number of classes and a limited number of examples per class. Meta-learning
approaches can further be partitioned in optimization-based, learning to update the learner’s meta-
parameters Finn et al. (2017); Zintgraf et al.; Nichol et al. (2018); Ravi & Larochelle (2016), metric-
based, learning a discriminative embedding space where novel examples are easy to classify Koch
et al. (2015); Snell et al. (2017); Sung et al. (2018); Vinyals et al. (2016) and model-based, depending
on specific model architectures to learn how to update the learner’s parameters effectively Santoro
et al. (2016); Munkhdalai & Yu (2017).

Beyond meta-learning, other approaches include leveraging the manifold structure of the data, by
label propagation, embedding propagation or graph neural networks Garcia & Bruna (2017); Kim
et al. (2019); Liu et al. (2018); Lazarou et al. (2020); and domain adaptation, reducing the domain
shift between source and target domains Dong & Xing (2018); Hsu et al. (2017). Another line
of research is data augmentation, addressing data deficiency by augmenting the few-shot training
dataset with extra examples in the image space Chen et al. (2019); Zhang et al. (2018) and in the
feature space Chen et al. (2019); Li et al. (2020); Luo et al. (2021). Such methods go beyond
standard augmentation Krizhevsky et al. (2012) towards synthetic data generation and hallucination,
achieving a greater extent of diversity.

Our work falls into the category of data augmentation in the feature space. We show that using a
simple loss function to train a feature hallucinator can outperform other state of the art few-shot
data augmentation methods that use more complex and sophisticated generation methods, such as
wGAN Li et al. (2020), VAE Luo et al. (2021) and networks trained to transfer example diver-
sity Chen et al. (2020). Also, to the best of our knowledge, we are the first to propose generating
tensor features instead of vector features in the few-shot setting.
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2 METHOD

2.1 PROBLEM FORMULATION

We are given a labeled datasetDbase := {(xi, yi)}Ii=1, with each example xi having a label yi in one
of the classes inCbase. This dataset is used to learn a parametrized mapping fθ : X → Rd×h×w from
an input image space X to a feature or embedding space, where feature tensors have d dimensions
(channels) and spatial resolution h× w (height × width).

The knowledge acquired at representation learning is used to solve novel tasks, assuming access to
a dataset Dnovel, with each example being associated with one of the classes in Cnovel, where Cnovel

is disjoint from Cbase. In few-shot classification Vinyals et al. (2016), a novel task is defined by
sampling a support set S from Dnovel, consisting of N classes with K labeled examples per class,
for a total of L := NK examples. Given the mapping fθ and the support set S, the problem is to
learn an N -way classifier that makes predictions on unlabeled queries, also sampled from Dnovel.
Queries are treated independently of each other. This is referred to as inductive inference.

2.2 REPRESENTATION LEARNING

The goal of representation learning is to learn the embedding function fθ that can be applied to
Dnovel to extract embeddings and solve novel tasks. We use fθ followed by global average pooling
(GAP) and a parametric base classifier cφ to learn the representation. We denote by f̄θ : X → Rd
the composition of fθ and GAP. We follow the two-stage regime by Tian et al. (2020) to train our
embedding model. In the first stage, we train fθ on Dbase using standard cross-entropy loss LCE:

L(Dbase; θ, φ) :=

I∑
i=1

LCE(cφ(f̄θ(xi)), yi) +R(φ), (1)

where R is a regularization term. In the second stage, we adopt a self-distillation process: The
embedding model fθ and classifier cφ from the first stage serve as the teacher and we distill their
knowledge to a new student model fθ′ and classifier cφ′ , with identical architecture. The student
is trained using a linear combination of the standard cross-entropy loss, as in stage one, and the
Kullback-Leibler (KL) divergence between the student and teacher predictions:

LKD(Dbase; θ
′, φ′) := αL(Dbase; θ

′, φ′) + βKL(cφ′(f̄θ′(xi)), cφ(f̄θ(xi))), (2)
where α and β are scalar weights and θ, φ are fixed.

2.3 FEATURE TENSOR HALLUCINATOR

All existing feature hallucination methods are trained using vector features, losing significant spatial
and structural information. By contrast, our hallucinator is trained on the tensor features before
global average pooling and generates tensor features as well. In particular, we use the student model
fθ′ : X → Rd×h×w, pre-trained using (2), as our embedding network to train our tensor feature
hallucinator. The hallucinator consists of two networks: a conditioner network h and a generator
network g. The conditioner aids the generator in generating class-conditional examples. Given a
set {xji}Ki=1 of examples associated with class j for j = 1, . . . , N , conditioning is based on the
prototype tensor pj ∈ Rd×h×w of each class j,

pj :=
1

K

K∑
i=1

fθ′(x
j
i ). (3)

The conditioner h : Rd×h×w → Rd′ maps the prototype tensor to the class-conditional vector
sj := h(pj) ∈ Rd′ . The generator g : Rk+d′ → Rd×h×w takes as input this vector as well as
a k-dimensional sample z ∼ N (0, Ik) from a standard normal distribution and generates a class-
conditional tensor feature g(z; sj) ∈ Rd×h×w for class j.

2.4 TRAINING THE HALLUCINATOR

We train our hallucinator using a meta-training regime, similar to Li et al. (2020); Chen et al. (2019);
Schwartz et al. (2018). At every iteration, we sample a new episode by randomly samplingN classes
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and K examples Xj := {xji}Ki=1 for each class j from Dbase. We obtain the prototype tensor pj for
each class j by (3) and the class-conditional vector sj := h(pj) by the conditioner h. For each class
j, we draw M samples {zm}Mm=1 from a normal distribution N (0, Ik) and we generate M class-
conditional tensor features {g(zm; sj)}Mm=1 using the generator g. We train our hallucinator {h, g}
on the episode data X := {Xj}Nj=1 by minimizing the mean squared error (MSE) of generated
class-conditional tensor features of class j to the corresponding class prototype pj :

Lhal(X;h, g) =
1

MN

N∑
j=1

M∑
m=1

‖g(zm;h(pj))− pj‖2 . (4)

2.5 INFERENCE

At inference, we are given a few-shot task with a support set S of N classes with K examples
Sj := {xji}Ki=1 for each class j. We compute the tensor feature fθ′(x

j
i ) ∈ Rd×h×w of each example

using our trained backbone network fθ′ and obtain the prototype pj of each class j by (3). Then,
using our trained tensor feature hallucinator {h, g}, we generateM class-conditional tensor features
Gj := {g(zm;h(pj))}Mm=1 for each class j, also in Rd×h×w, where zm are drawn from N (0, Ik).
We augment the support features fθ′(Sj) with the generated featuresGj , resulting inK+M labeled
tensor features per class in total. We now apply GAP to those tensor features and obtain new, vector
class prototypes in Rd. Finally, we also apply GAP to the query tensor features and classify each
query to the class of the nearest prototype.

3 EXPERIMENTS

3.1 SETUP

Datasets We carry out experiments on three commonly used few-shot classication benchmark
datasets: miniImagenet, CUB and CIFAR-FS. Further details are provided in subsection A.1.

Tasks We consider N -way, K-shot classification tasks with N = 5 randomly sampled novel
classes and K ∈ {1, 5} examples drawn at random per class as support set S, that is, L = 5K
examples in total. For the query setQ, we draw 15 additional examples per class, that is, 75 examples
in total, which is the most common choice Liu et al. (2018); Li et al. (2019); Yu et al. (2020).

Competitors We compare our method with state-of-the-art data augmentation methods for few-
shot learning, including MetaGAN Zhang et al. (2018), ∆-encoder Schwartz et al. (2018), salient
network (SalNet) Zhang et al. (2019), diversity transfer network (DTN) Chen et al. (2020), dual
TriNet Chen et al. (2019), image deformation meta-network (IDeMe-Net) Chen et al. (2019), ad-
versarial feature hallucination network (AFHN) Li et al. (2020) and variational inference network
(VI-Net) Luo et al. (2021).

Networks Many recent competitors Chen et al. (2019); Chen et al. (2019); Li et al. (2020); Luo
et al. (2021) use ResNet-18 as backbone embedding model. To perform as fair comparison as
possible, we use the same backbone.

Our tensor feature hallucinator (TFH) consists of a conditioner network and a generator network.
The conditioner h : Rd×h×w → Rd′ consists of two convolutional layers with a ReLU activation in-
between, followed by flattening and a fully-connected layer. The generator g : Rk+d′ → Rd×h×w
consists of concatenation of z and sj into (z; sj) ∈ Rk+d′ , followed by reshaping to (k+d′)×1×1
and three transpose-convolutional layers with ReLU activation functions in-between and a sigmoid
function in the end. More details are provided in subsection A.2.

We also provide an improved solution, called TFH-ft, where our tensor feature hallucinator is fine-
tuned on novel-class support examples at inference.

Baselines To validate the benefit of generating tensor features, we also implement a vector feature
hallucinator (VFH), where we use f̄θ′ : X → Rd including GAP (2) as embedding model. In this
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METHOD BACKBONE miniIMAGENET CUB CIFAR-FS
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MetaGAN Zhang et al. (2018) ConvNet-4 52.71±0.64 68.63±0.67 – – – –
∆-Encoder† Schwartz et al. (2018) VGG-16 59.90 69.70 69.80±0.46 82.60±0.35 66.70 79.80
SalNet Zhang et al. (2019) ResNet-101 62.22±0.87 77.95±0.65 – – – –
DTN Chen et al. (2020) Resnet-12 63.45±0.86 77.91±0.62 72.00 85.10 71.50 82.80

Dual TriNet Chen et al. (2019) ResNet-18 58.80±1.37 76.71±0.69 69.61 84.10 63.41±0.64 78.43±0.64

IDeMe-Net Chen et al. (2019) ResNet-18 59.14±0.86 74.63±0.74 – – – –
AFHN Li et al. (2020) ResNet-18 62.38±0.72 78.16±0.56 70.53±1.01 83.95±0.63 68.32±0.93 81.45±0.87

VI-Net Luo et al. (2021) ResNet-18 61.05 78.60 74.76 86.84 – –

Baseline (1) ResNet-18 56.81±0.81 78.31±0.59 67.14±0.89 86.22±0.50 65.71±0.95 84.68±0.61

Baseline-KD (2) ResNet-18 59.62±0.85 79.64±0.62 70.85±0.90 87.64±0.48 69.15±0.94 85.89±0.59

VFH (ours) ResNet-18 61.92±0.85 77.02±0.64 75.25±0.86 87.96±0.48 72.60±0.93 84.26±0.67

TFH (ours) ResNet-18 64.25±0.85 80.10±0.61 75.83±0.91 88.17±0.48 73.88±0.87 85.92±0.61

TFH-ft (ours) ResNet-18 63.92±0.86 80.41±0.60 75.39±0.86 88.72±0.47 73.89±0.88 87.15±0.58

Table 1: Comparison of our proposed method variants and baselines to state of the art on few-shot
classification datasets. †: Delta-encoder uses VGG-16 backbone for miniImageNet and CIFAR-
FS and ResNet-18 for CUB. Baseline (1), Baseline-KD (2): prototypical classifier at inference,
no feature generation. VFH: our vector feature hallucinator; TFH: our tensor feature hallucinator;
TFH-ft: our tensor feature hallucinator followed by fine-tuning at inference.

case, the conditioner h : Rd → Rd′ consists of two fully-connected layers with a ReLU activation
in-between. The generator g : Rk+d′ → Rd also consists of two fully-connected layers with a
ReLU activation in-between and a sigmoid function in the end.

Finally, we experiment with baselines consisting of the embedding network fθ (1) or fθ′ (2) at
representation learning and a prototypical classifier at inference, without feature hallucination. We
refer to them as Baseline (1) and Baseline-KD (2) respectively.

3.2 RESULTS

Table 1 compares our method with the state of the art. Most important are comparisons with Chen
et al. (2019); Chen et al. (2019); Li et al. (2020); Luo et al. (2021), which use the same backbone,
ResNet-18. Our tensor feature hallucinator provides new state of the art performance in all datasets
and all settings, outperforming all competing few-shot data augmentation methods. Fine-tuning at
inference is mostly beneficial, especially at 5-shot tasks. This is expected, as more data means less
risk of overfitting. It is clear that the tensor feature hallucinator is superior to the vector feature
hallucinator, while the latter is still very competitive. Self-distillation also provides a significant
boost of performance in all experiments.

4 CONCLUSION

Our solution is conceptually simple and improves the state of the art of data augmentation methods
in the few-shot learning setting. We provided experimental evidence showing that using a simple
loss function and exploiting the structural properties of tensors can provide significant improvement
in performance. Notably, the importance of using tensor features is evident through comparison
with vector features, which are unable to achieve similar performance. Potential future directions
include investigating the performance of our method with different backbone architectures and other
experimental settings beyond few-shot learning.
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A APPENDIX

A.1 DATASET DETAILS

miniImageNet This is a widely used few-shot image classification dataset Vinyals et al. (2016);
Ravi & Larochelle (2016). It contains 100 randomly sampled classes from ImageNet Krizhevsky
et al. (2012). These 100 classes are split into 64 training (base) classes, 16 validation (novel) classes
and 20 test (novel) classes. Each class contains 600 examples (images). We follow the commonly
used split provided by Ravi & Larochelle (2016).

CUB This is a fine-grained classification dataset consisting of 200 classes, each corresponding to
a bird species. We follow the split defined by Chen et al. (2019); Hilliard et al. (2018), with 100
training, 50 validation and 50 test classes.

CIFAR-FS This dataset is derived from CIFAR-100 Krizhevsky et al. (2009), consisting of 100
classes with 600 examples per class. We follow the split provided by Chen et al. (2019), with 64
training, 16 validation and 20 test classes.

All images from all datasets are resized to 224 × 224 in a similar way to other data augmentation
methods Li et al. (2020); Chen et al. (2019); Chen et al. (2019); Luo et al. (2021)

A.2 IMPLEMENTATION DETAILS

Our implementation is based on PyTorch Paszke et al. (2017).

Networks In our tensor feature hallucinator (TFH), the embedding dimension is d = 512 and the
resolution h× w is 7× 7.

The convolutional layers of the conditioner use kernels of size 3 × 3 and stride 1 and in the input
layer we also use padding 1. The channel dimensions are 512 and 256 for the first and second
convolutional layers respectively. The dimension of the class-conditional vector is set to d′ = 1024.
The tensor dimensions of all conditioner layers are [512× 7× 7], [256× 5× 5], [6400] (flattening)
and [1024].

All three transpose-convolutional layers of the generator use kernels of size 3× 3, stride 1 and 512
channels. The dimension of z ∼ N (0, Ik) is k = 1024. The tensor dimensions of all generator
layers are [2048× 1× 1], [512× 3× 3], [512× 5× 5], and [512× 7× 7].

In our vector feature hallucinator (VFH), the dimensions of the class-conditional vector as well as
the hidden layers of both the conditioner and the generator are all set to 512.

Training For the embedding model, similarly to Tian et al. (2020), we use SGD optimizer with
learning rate 0.05, momentum 0.9 and weight decay 0.0005. For data augmentation, as in Lee et al.
(2019), we adopt random crop, color jittering, and horizontal flip.

The tensor feature hallucinator is trained in a meta-training regime with N = 5 classes, K = 20
examples per class and generation of M = 50 class-conditioned examples in every task. We use
Adam optimizer with initial learning rate 10−5, decaying by half at every 10 epochs. We train for
50 epochs, where each epoch consists of 600 randomly sampled few-shot learning tasks. At test
time, we find that generating more class-conditioned examples improves the accuracy, therefore we
generate M = 500 class-conditioned examples.

Our TFH-ft version uses the novel-class support examples to fine-tune all of its parameters. In the
fine-tuning stage, we use exactly the same loss function as in the hallucinator training phase (4) and
we fine-tune for 10 steps using Adam optimizer and learning rate of 10−5.
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