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ABSTRACT

One area of intense scientific interest for the study of sandstones, carbonates, and
shale at the pore scale is the use of limited image and petrophysical data to gen-
erate multiple realizations of a rock’s pore structure. We develop and evaluate a
deep learning-based method to synthesize porous media volumes from 2D train-
ing images using a generative flow model trained on x-ray computed tomogra-
phy images of rock texture and pore structure. These models are optimized on
a log-likelihood objective and are shown to synthesize large and realistic 3D im-
ages. Realism is gauged by quantitative comparison of topological features using
Minkowski functionals. We also evaluate the single-phase permeability and show
that physics-based transport properties of the generated samples match measured
trends.

1 INTRODUCTION

Porous medium properties, such as porosity and permeability, are often calculated from laboratory
measurements or direct imaging of the rock microstructure (Walsh & Frangos, 1968; Ketcham &
Carlson, 2001). Due to acquisition times and experimental costs, however, it is difficult to acquire
multiple datasets to evaluate the variability of these properties, especially as sample permeability de-
creases. Researchers therefore often use computational methods to reconstruct porous media based
on statistical properties (Okabe & Blunt, 2007). Recently, researchers have applied deep generative
models, specifically GANs, to reconstruct porous systems from limited rock image datasets (Mosser
et al., 2017; Feng et al., 2019). Advantages of using deep learning-based over stochastic methods
are rapid generation of the images, especially in 3D, and removing the necessity of incorporating
physical parameters that must be predetermined a priori from the rock dataset.

Here we consider flow-based models due to the model’s scalability and invertability (Dinh et al.,
2015). We apply generative flow models to reconstruct 3D volumes of a benchmark sandstone
sample because its petrophysical properties are fairly well understood. The advantage of this method
is that the training is done on 2D images and, afterwards, 3D volume generation is done via a
latent space interpolation method. This allows for faster training, reconstruction, and flexibility
to incorporate multimodal datatsets from both 2D and 3D imaging methods often used for rock
characterization.
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To evaluate the quality of synthetic rock images, we consider how well the synthetic volumes mimic
the physical properties of the real rock system. Morphological indicators, such as porosity (i.e., void
volume fraction) and connectivity, affect the hydrocarbon-producing potential of a reservoir and are
directly calculated from the porous media images. Permeability is a measure of fluid flow capacity
within the porous system and is related to porosity, the pore shapes, and connectivity as well. The
volumes generated are shown to be as useful as the original datasets for computing porosity, per-
meability, and other rock properties. We verify the accuracy of the generated images by calculating
morphological parameters and comparing these against the ground truth rock dataset.

2 METHODS

2.1 GENERATIVE FLOW MODEL

We adapt a preexisting generative flow model to our dataset, specifically one with invertible 1 × 1
convolutions, coined Glow, that has been shown to create realistic-looking, large images (Kingma
& Dhariwal, 2018). We start with an implementation of the original Glow model (van Amersfoort,
2019) and modify it to load and process our own rock datasets and generate 3D volumes. After the
model is trained on the 2D image dataset, we generate a series of anchor slices with a predetermined
latent space vector, and interpolate between the anchor slices to create the 3D volume. The interpo-
lation is done by taking a linear combination of the latent space representation of the anchor slices.
Further details on the calculation of the latent vectors are described in (Anderson et al., 2020).

2.2 EVALUATION METRICS

2.2.1 MORPHOLOGICAL PARAMETERS

To evaluate the accuracy of our model, we use a set of morphological descriptors known as
Minkowski functionals. Minkowski functionals are stereological estimators providing local and
global morphological information that is related to single-phase flow mechanisms (Mecke & Arns,
2005; Arns et al., 2010). In 3D, there are four Minkowski functionals that describe the geometric
parameters of a set X with a smooth surface ∂X: volume V (X), surface area S(X), integral of
mean curvature b̄(X), and Euler-Poincaré characteristic χ(X), where

V (X) =

∫
X

dx (1)

S(X) =

∫
∂X

dx (2)

b̄(X) =
1

2π

∫
∂X

κ1(x) + κ2(x)

2
dx (3)

χ(X) =
1

4π

∫
∂X

κ1(x)κ2(x) dx (4)

and where κ1(x) and κ2(x) with κ(x) = 1
r(x) are the curvatures corresponding to the maximum and

minimum curvature radii, respectively. For discrete images, the functionals are estimated using the
MorphoLibJ library in ImageJ (Legland et al., 2016; Doube et al., 2010).

We also compute the two-point correlation function, or covariance, of the 3D volume. The two-point
correlation function has been used to inform the reconstruction of homogeneous, single-scale media
(Jiao et al., 2008). For a binary image, the two-point correlation function represents the probability
that two points separated by a lag distance, r, are the same phase. We calculate the directional and
radially-averaged correlation function, S2(r), for the pore phase, P , by

S2(r) = P(x ∈ P, x + r ∈ P ). (5)

2.2.2 FLOW PARAMETERS

In addition to porosity, the effective permeability of a porous rock depends on the pore size, geom-
etry, and connectivity. We calculate the single-phase permeability of the generated 3D volumes and
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Figure 1: Example of random training image slices and generated image stacks. Image size is
1282 px. The first and last synthetic images are anchor images and the 12 images in between are
interpolated by a linear combination of the latent space representations. The generated images are
grayscale initially and then thresholded to yield a binary image stack.

Figure 2: Minkowski functionals - porosity, specific surface area, mean breadth, and Euler-Poincaré
characteristic - for the training image set (100 subsampled volumes) and generated images (100
generated volumes).

the real training dataset using identical methods. We use two physics-based methods to compute
the single-phase flow: 1) a direct numerical solution (DNS) to the Navier-Stokes equation and 2)
a lattice Boltzmann method (LBM) that considers flow to be composed of a collection of pseudo-
particles represented by a velocity distribution function (Guan et al., 2019; Crouse et al., 2016).
We also obtain the pore-size distribution (PSD) and mercury injection capillary pressure (MICP)
directly from the synthetic and training image volumes. The PSD of the imaged rock volume pro-
vides information of the entire pore space geometry and MICP is an indicator of drained fluid in a
connected pore space environment from one face to the another.

3 RESULTS

3.1 MORPHOLOGICAL EVALUATION

The morphological and petrophysical analyses are performed on the 1283 voxel volumes of a con-
ventional sandstone rock. Figure 1 shows an example of the training image, generated image stack,
and binarized image stack. The first and last images of the synthetic 3D series are anchor images
generated from the trained model. The 12 images in between are interpolated using the volume
generation method described earlier. We observe in both the grayscale and binarized images that
connection of the grain and pore phases is successful throughout the image stack.

The morphological parameters calculated for the training data and synthetic data are shown in Fig.
2. The distribution of porosity, specific surface area, and Euler-Poincaré characteristic between the
training and synthetic datasets agree well and have similar margins of error. The second-order func-
tional, represented as the mean breadth, between the two datasets are not in agreement, suggesting
differences in the curvature of the generated dataset. We consider single-phase flow in an isotropic
sandstone, where the surface-to-volume ratio and topology, represented by the specific surface area
and Euler-Poincaré characteristic, respectively, largely affects flow behavior (Mecke & Arns, 2005).
For two-phase flow of oil and gas in more complex microporous systems, however, matching the
breadth becomes important in order to capture the curved interfaces between the immiscible phases.
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Figure 3: Directional and radially-averaged covariance of the sandstone training image (red) and
synthetic volumes (step size = 12).

Figure 4: Single-phase permeability for multiple realizations of the sandstone training dataset and
generated synthetic images, voxel size of 1283. Permeability is computed via Navier-Stokes (a)
or LBM (b) methods. Pore-size distribution (c) and capillary pressure vs. mercury saturation (d),
modeled as drainage along the vertical axis with a constant contact angle for original (black) and
synthetic (red) pore volumes.

It is difficult for a single model to match all Minkowski functionals accurately and suggests further
refinement or training is needed if studying two-phase flow.

The radially-averaged covariance of the training and synthetic data confirms agreement between the
two datasets, as shown in Fig. 3. Both training and synthetic datasets show exponential decay and
stabilization at a lag distance of approximately 25 voxels. For the generated samples, the chord
length for the pore and solid phases are 11 and 37 voxels, respectively. The similarity between the
chord length of the pore phase and the interpolation step size further motivates using the statistical
properties of the material to inform the volume generation process.

3.2 PETROPHYSICAL COMPARISON

Figure 4 shows the single-phase permeability values obtained from both Navier-Stokes and LBM
calculations and the PSD and MICP curves the original training images and generated volumes. The
training image volumes were subsampled from the larger micro-CT dataset. We observe a similar
distribution of permeability values from the original and synthetic volumes using both computational
methods. There is little variability in both training and synthetic volumes. From the MICP graph,
we observe that the training dataset has a greater frequency of large pores compared to the synthetic
dataset. Given the sensitivity of MICP calculations to small changes in grain shape, as well as
the edge effects observed from the covariance curves (Fig. 3), the difference is reasonable. The
overall PSD curve and trend of the drainage experiment between the original and synthetic volumes
show good agreement. We also note that the pore-size distribution consists primarily of smaller
pores below 15 voxels (91.8 µm) with a few large pores in the synthetic and original volumes. The
capillary pressure graph confirms the behavior and the percolating pore space (i.e. connected to both
the top and the bottom) between the two datasets is similar.
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Table 1: Normalized flow model architecture and parameters. *Refers to number of epochs to warm
up the learning rate from 0 to α

Image size 1282 pixels
Minibatch size 4

Learning rate, α 5× 10−4

Warm up* 5 epochs
Epochs 30

Flow coupling Additive

Figure 5: a) Example of training loss for the generative flow model. Training image size = 1282

pixels, batch size = 4, learning rate = 0.0005, number of epochs = 30, flow coupling = additive.
b) 1282 training image set (leftmost column), compared against output of the model during training.
The labels a-e correspond to iterations 500, 5000, 25000, 50000, and 75000, as marked in a).

A APPENDIX

A.1 TRAINING DETAILS

We use the default parameters for initial training as detailed in Table 1 below. Figure 5 shows the
loss function and output images, respectively, during training the model on 1282 pixel images. We
observe a quick drop in training loss during the first 10k iterations and then little change after 25k
iterations. The generated images at different iteration steps show the evolution of the model as it
learns to generate the rock images. We observe a noticeable change from 500 to 25k iterations, but
afterwards there is little visual difference.

A.2 INTERPOLATION METHOD

Figure 6 shows the relationship between the latent representation of the image image data and the
volume generation process. While it would be possible to calculate the number of interpolation
steps by minimizing the negative log-likelihood of the generated images across the three Carte-
sian planes—assuming that the sample volume is isotropic and homogeneous—this method is time-
intensive when evaluating over a large range of possible interpolation steps. Instead, we use the
average pore chord length, calculated from the two-point correlation function across the x − y di-
rections, to inform the appropriate step size in the z direction. This method allows for a hybrid
approach of using statistical properties to inform the final 3D reconstruction of images that were
trained via a deep-learning method.
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Figure 6: Diagram showing how a linear interpolation of vectors in the latent space leads to a
connected volume between two synthetically-generated anchor slices in the image space. Figure
adapted from Anderson et al. (2020)

.

Figure 7: Directional covariance of the sandstone compared against the synthetic volume in the
interpolating (x) direction for different interpolation step sizes. A step size of 12 shows the best
agreement with the directional covariance of the original training dataset (red).

We determine the average chord length for the pore and solid phases from the slope of two-point
correlation function at the origin (Torquato, 2005),

l̄porec =
φ

S
′
2(0)

(6)

l̄solidc =
1− φ
S

′
2(0)

. (7)

The chord is the length between intersections of a line with the pore solid interface. The chord length
is especially interesting to address heterogeneous pore structures because it provides a measure of
structural disorder.

Figure 7 shows the effect of modifying the interpolation step size on the directional covariance in
the interpolation plane (x). We observe the best match between the training and synthetic dataset
at a step size of 12 interpolated images. At a step size of 16, the covariance at short lag distances
diverges. At step sizes of 8 and 4, the covariance exhibits periodic patterns that are not in the training
dataset and do not match the original dataset at short lag distances either. For the remaining results,
we use a step size of 12. The directional and radially-averaged covariance for this step size is shown
in Fig. 3 and indicates that the generated images capture the two-point statistics in all directions
reasonably well. We observe some edge effects after 110 voxels that been observed with GAN-
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generated images as well and can be resolved by cropping the image accordingly (Mosser et al.,
2017).

The average chord length of the pore space, a statistical property, is useful to inform accurate 3D
generation of a model trained on a 2D dataset. The agreement of the two-point correlation function
and Minkowski functionals support this method. As shown in Fig. 7, step size has an important effect
on the 3D statistical properties of the generated volume. The step size during interpolation refers to
the number of intermediate images generated in between a pair of anchor slices. Deviations between
the original and synthetic sample primarily occurred at small lag distances and demonstrate the
difficulty of capturing the short-range properties in all directions. Deviations at larger lag distances
may indicate overfitting or that long-range properties were not completely captured during training.
Small step sizes appear to match the long-range properties better, but exhibit periodic behavior that
is not seen in the original sample.
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