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Figure 1: Our scriptable tool leverages hardware-accelerated path tracing to generate photorealistic
images. Annotations are shown along the bottom row, from left to right: image with no motion blur,
depth, surface normals, segmentation labels, texture coordinates, and optical flow.

ABSTRACT

We present a Python-based renderer built on NVIDIA’s OptiX ray tracing engine
and the OptiX AI denoiser, designed to generate high-quality synthetic images for
research in computer vision and deep learning. Our tool enables the description
and manipulation of complex dynamic 3D scenes containing object meshes, mate-
rials, textures, lighting, volumetric data (e.g., smoke), and backgrounds. Metadata,
such as 2D/3D bounding boxes, segmentation masks, depth maps, normal maps,
material properties, and optical flow vectors, can also be generated. In this work,
we discuss design goals, architecture, and performance. We demonstrate the use
of data generated by path tracing for training an object detector and pose estima-
tor, showing improved performance in sim-to-real transfer in situations that are
difficult for traditional raster-based renderers. We offer this tool as an easy-to-use,
performant, high-quality renderer for advancing research in synthetic data gener-
ation and deep learning. https://github.com/owl-project/NVISII

1 INTRODUCTION

For many computer vision tasks, it is challenging or even impossible to obtain labeled real-world
images for use in training deep neural networks. For example, labeled ground truth of rare events
like car crashes, or for dense high-dimensional data like optical flow vectors, are not easy to obtain.
To overcome these limitations, researchers have explored synthetic data for a variety of applica-
tions: object pose estimation (Tremblay et al., 2018b; Denninger et al., 2019), depth estimation of
transparent objects (Sajjan et al., 2019), scene segmentation (Handa et al., 2015; Roberts & Paczan,
2020), optical flow (Dosovitskiy et al., 2015), autonomous vehicles (Ros et al., 2016; Prakash et al.,
2019), robotic control (Tobin et al., 2017), path planning and reasoning in 3D scenes (Kolve et al.,
2017; Xia et al., 2020), and so forth.
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Table 1: Related work compared to our proposed system. ‘3’ refers to fully supported, ‘7’ not
supported, and ‘–’ partially supported or it is complicated.

AI2-Thor iGibson NDDS Unity3D Sapien BlenderProc Ours
path tracing 7 7 7 3 3 3 3

easy installation 3 3 7 – – – 3
cross platform 3 3 7 3 7 3 3

Python API 3 3 7 7 – – 3
headless rendering 3 3 7 7 3 3 3

To generate such datasets, a variety of tools have been developed, including AI2-Thor (Kolve et al.,
2017), iGibson (Xia et al., 2020), NDDS (To et al., 2018), Unity3D (Crespi et al., 2020), Sapien (Xi-
ang et al., 2020), BlenderProc (Denninger et al., 2019), and others. See Table 1. Although AI2-Thor
and iGibson come with powerful Python APIs, both of them are based on classic raster scanning.
On the other hand, the more recent tools capable of photorealistic imagery via path tracing (such
as Unity3D, Sapien, and BlenderProc) do not come with scriptable interfaces. To overcome this
limitation, in this work we introduce NViSII: a scriptable tool for path-traced image generation.
With our tool, users can construct and manipulate complex dynamic 3D scenes containing object
meshes, materials, textures, lighting, volumetric data (e.g., smoke), and cameras—all potentially
randomized—using only Python code. This design choice ensures that users have full control, al-
lowing scenes to be permuted on-the-fly according to the needs of the problem being considered. By
leveraging path tracing, photorealistic images are produced, including physically-based materials,
lighting, and camera effects. All of this can be achieved while maintaining interactive frame rates
via NVIDIA’s OptiX library and hardware accelerated ray tracing. Our tool is easily accessible via
the pip packaging system1.

We offer this tool to the community to enable researchers to procedurally manage arbitrarily complex
scenes for photorealistic synthetic image generation. Our contributions are as follows: 1) An open
source, Python-enabled ray tracer built on NVIDIA’s OptiX, with a C++/CUDA backend, to advance
sim-to-real and related research. 2) A demonstration of the tool’s capabilities in generating synthetic
images by training a DOPE pose estimator network (Tremblay et al., 2018c) and a 2D bounding
detector (Zhou et al., 2019) for application to real images. 3) An investigation into how physically-
based material definitions can increase a pose estimator’s accuracy for objects containing specular
materials.

2 PATH TRACER WITH PYTHON INTERFACE

We developed the tool with three goals in mind: 1) ease of installation, 2) speed of development, and
3) rendering capabilities. For ease of installation, we ensured that the solution is accessible, open
source, and cross platform (Linux and Windows), with pre-compiled binaries (thus obviating the
need to build the tool) that are distributed using a package manager. For speed of development, the
solution provides a comprehensive and interactive Python API for procedural scene generation and
domain randomization. The tool does not require embedded interpreters, and it is well-documented
with examples. Finally, we wanted a solution that supports advanced rendering capabilities, such as
multi-GPU enabled ray tracing, physically-based materials, physically-based light controls, accurate
camera models (including defocus blur and motion blur), native headless rendering, and various
metadata (segmentation, motion vectors, optical flow, depth, surface normals, albedo, and so forth).
See Figure 2 for some example renders.

2.1 TOOL ARCHITECTURE

Our rendering tool follows a data driven entity component system (ECS) design. Such ECS designs
are commonly used for game engines and 3D design suites, as they help keep the scene descrip-
tion intuitive and flexible by avoiding complex multiple-inheritance hierarchies required by object-
oriented designs. This flat design allows for simpler procedural generation of scenes when compared
to object-oriented designs.

1pip install nvisii
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Figure 2: Example renders. TOP: bistro scene1 (zoom for details), indoor scene2, texture used as
light. BOTTOM: smoke with 3D volume, reflective metal, domain randomization.

After initialization, the scene entities and components are created at runtime, as opposed to an
offline scene description format like many prior solutions. See Figure 3 for a simple example. By
enabling runtime scene edits, our solution more effectively leverages modern rendering performance
capabilities during synthetic image generation. These components can be created using either the
C++ or Python API, and as these components are created and connected together using entities, the
out-of-date components are asynchronously uploaded to a collection of GPUs in a data-replicated
pattern for interactive rendering.

Any given entity can be attached to any combination of the following component types: transform,
mesh, material, light, camera, and volume. Transforms refer to the entity’s SE(3) behaviour, e.g.,
3D location, 3D rotation, motion blur, etc. Meshes describe the 3D points and triangles to be ren-
dered. Materials refer to the entity’s physically-based rendering material definition. Lights define
the energy emitted by the entity, which requires a mesh since point lights are physically impossi-
ble. Cameras refer to scene views, along with focal length and aperture. Volumes can be used in
place of meshes to represent voxel data like smoke. In addition to the aforementioned components,
textures can be used to drive any material properties, and when a texture is used in concert with a
light, the texture RGB value defines the color of the light. Once connected to an entity, components
immediately affect the appearance of the scene. These components can also be reused across entities
as a basic form of instancing. Swapping out and modifying components additionally serves as an
effective way to randomize the scene.

2.2 RENDERING CAPABILITIES

import nvisii
nvisii.initialize()
# Create camera
my_camera = nvisii.entity.create(

name = ’cam’,
transform = nvisii.transform.create(’c_tfm’),
camera = nvisii.camera.create(’c_cam’)

)
my_camera.get_transform().look_at(

eye = [3, 3, 3], at = [0, 0, 0], up = [0, 0, 1]
)
nvisii.set_camera_entity(my_camera)
# Create o b j e c t
my_object = nvisii.entity.create(

name = ’obj’
)
my_object.set_transform(

transform = nvisii.transform.create(’o_tfm’),
mesh = nvisii.mesh.create_sphere(’o_mesh’),
material = nvisii.material.create(’o_mat’)

)
material.get(’o_mat’).set_base_color([1, 0, 0])
# Render image
nvisii.render_to_file(

width = 512, height = 512,
samples_per_pixel = 1024,
file_path = ’image.png’

)
nvisii.deinitialize()

Figure 3: A minimal Python script example

The material definition follows the Principled
BSDF (Burley, 2015). This model consists of
sixteen “principled" parameters, where all com-
binations result in physically-plausible, or at
least well-behaved, results. Among these are
base color, metallic, transmission, and rough-
ness parameters. All parameters can be driven
using either constant scalar values or texture
components. With these parameters, scenes can
represent smooth and rough plastics, metals,
and dielectric materials (e.g., glass). In addi-
tion, material components also accept an op-
tional “normal map" texture to allow for more
details on surface geometry.

Direct and indirect lighting is computed
using NVIDIA’s OptiX ray tracing frame-
work (Parker et al., 2010) through a standard
path tracer with next event estimation. Multi-
GPU support is enabled using the OptiX Wrap-
per Library (OWL) developed by Wald et al.
(2020). These frameworks enable real-world
effects like reflections, refractions, and global

1https://developer.nvidia.com/orca/amazon-lumberyard-bistro
2https://blendswap.com/blend/12584
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Table 2: Sim-to-real 2D bounding box detection experiment on HOPE dataset.
Methods AP AP50 AP75

DOME + MESH + FAT 47.8 70.0 47.7
DOME + MESH 46.2 70.1 47.2

DOME 44.2 66.0 45.4
MESH 36.1 59.4 36.2

FAT 33.7 49.2 34.9

illumination, while simultaneously benefiting from hardware-accelerated ray tracing. Finally, the
OptiX denoiser is used to more quickly obtain clean images for use in training.

3 EVALUATION

In this section we explore the use of our tool to generate synthetic data for training neural networks.

HOPE object detection. We trained CenterNet (Zhou et al., 2019) to perform 2D detection of
known objects from the HOPE dataset (Tyree et al., 2019) consisting of 28 toy grocery items with
associated 3D models. Since the dataset does not contain any training images, it is an ideal candidate
for sim-to-real transfer. The test set contains 238 unique images with 914 unique object annotations.
To train the detector we generated three datasets. 1) DOME, a domain randomization set of images
similar to those generated by Tremblay et al. (2018c), consists of 3D objects flying in front of a
real image background. 2) MESH, inspired by recent work by Hinterstoisser et al. (2019), consists
of random object shapes as background. 3) FAT, similar to Tremblay et al. (2018b), allows objects
to freely fall within a photorealistic scene. We simplify the prior work by using a dome texture to
create photorealistic backgrounds and create natural lights, then apply a random floor texture onto
the plane to simulate the surface. Please consult the supplemental section for greater details on the
datasets, with examples.

We use a collection of 6k rendered images to train the object detector, and we compare using a
single type of dataset with a mixture of datasets, while keeping the training size constant. We
trained CenterNet2 from scratch, using SGD optimizer with learning rate of 0.02 reduced by 10X at
81k and 108k steps, and a batch size of 128. The network was trained for 126k iterations on eight
NVIDIA V100s for about 12 hours. Table 2 shows the results, specifically that the DOME dataset
performs better than DR. These results also confirm the observation from Tremblay et al. (2018c)
that mixing different dataset generation methods outperfoms using a single one.

Metallic material object pose estimator

Tremblay et al. (2018c) hypothesized that the somewhat disappointing pose estimation accuracy
of the YCB potted meat model was caused by inaccurate synthetic representation of the object’s
real-world material properties. The object is metallic on the top and bottom, and is wrapped with
a plastic-like label. Additionally, the original 3D model provided by YCB (Calli et al., 2015) has
lighting conditions (highlights) baked into the model’s texture. This results in unrealistic appearance,
especially under variable lighting conditions. To test this hypothesis, we modified the original base
color texture of the model to remove all baked highlights. Next, we manually segmented the different
material properties of the object (specifically the metallic vs. non-metallic regions) to create a more
physically-accurate material description. Similar to the previous experiment, we generated 60k
domain randomized synthetic images for training using NViSII. Compared with the original DOPE
weights available online, which scores 0.314 for area under the ADD threshold curve on YCB-video
(Xiang et al., 2017), our proposed solution gets an improved 0.462.

4 CONCLUSION

We have presented an open-source Python-enabled ray tracer built on top of NVIDIA’s OptiX with
a C++/CUDA backend to advance sim-to-real and related research. The tool’s design philosophy is
easy install, accessible hardware requirements, enable scenes to be created through scripting, and
rendering of photorealistic images. We release this tool in the hope that it will be helpful to the
community.

2We used the repo at github.com/FateScript/CenterNet-better
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SUPPLEMENTAL

In this section we explore the use of our tool to generate synthetic data for training neural networks.
We first explore the problem of 2D detections and then explore how different material propreties can
be used to enhance pose estimation of metallic objects.

HOPE OBJECT DETECTION

Using NViSII we generated 3 different dataset types: DOME, MESH, and FAT.

DOME. Tobin et al. (2017) demonstrated that domain randomization can be used to train a model
fully on synthetic data to be used on real data. Tremblay et al. (2018a) extended the framework for
2D car detection. In this work we generate similar images, see Figure 4 first row for examples. In
our tool, we leverage its capacity to use HDR dome texture to illuminate a scene, which offers a
natural looking light that mimics interreflections. Similar to Tremblay et al. (2018a) we randomize
the object poses within a volume and add flying distractors. See Figure 4 first row.

MESH. Hinterstoisser et al. (2019) introduced the concept that using other 3D meshes as back-
ground could potentially lead to better sim-to-real. As such, we use our tool capacity to generate
random 3D meshes and applied random material to these, we used around a 1000 moving meshes as
background as seen in Figure 4 second row. For illumination we used 2 to 6 random lights (random
color and intensity) placed behind the camera to generate random light context. See Figure 4 second
row.

FAT. Tremblay et al. (2018b) introduced a dataset where objects were allowed to freely fall into a
complex 3D scene. Following on that work Tremblay et al. (2018c) proposed to mix falling dataset
and domain randomization dataset to solve the sim-to-real problem. As such we integrated our tool
with PyBullet (Coumans & Bai, 2016–2019) to let objects fall onto a simple plane, see Figure 4 third
row. We simplify the prior work were we use a dome texture to create photorealistic backgrounds and
create natural lights, and we then simply apply a random floor texture onto the plane to simulate the
surface. See Figure 4 third row. These renders are also similar to images generated by BlenderProc
(Denninger et al., 2019). Detections from the better model trained on using all the presented datasets
can be seen on Figure 5.

METALLIC MATERIAL OBJECT POSE ESTIMATOR

Figure 6 compares the physically-correct material vs. the original material with baked lighting.
These images demonstrate how the metallic texture causes a highlight from the lights along the
reflection direction under certain view angles, whereas the original texture is flat and contains un-
natural highlights that do not match the surrounding synthetic scene. Using the approach proposed
by Hinterstoisser et al. (2019) we generated 60k domain randomized synthetic images using path
raytracer for training with random meshes and random material as background. Two to six lights
were placed randomly behind the camera with randomized position, temperature, and intensity.
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DOME (Tremblay et al., 2018a)

MESH (Hinterstoisser et al., 2019)

FAT (Tremblay et al., 2018b)

Figure 4: Training images for pose estimation and object detection. For each row, images were
generated using a procedure similar to that of the reference shown.

Figure 5: Detections on real HOPE images (Tyree et al., 2019) using CenterNet (Zhou et al., 2019)
trained on synthetic data generated by NViSII. On these images, 68.2% of objects were detected,
with no false positives.
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Figure 6: TOP-LEFT: Original YCB texture with baked-in highlights. TOP-RIGHT: Corrected flat
texture and properly associated metallic material used by our tool. BOTTOM-LEFT: DR image
rendered by our tool. BOTTOM-RIGHT: Pose prediction from our trained model. (Note that the
model trained on the original YCB texture does not detect the meat can in this image.)
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