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ABSTRACT

Generalization is a central problem in machine learning, especially when data is
limited. Using prior information to enforce constraints is the principled way of
encouraging generalization. In this work, we propose to leverage the prior informa-
tion embedded in pretrained language models (LM) to improve generalization for
intent classification and slot labeling tasks with limited training data. Specifically,
we extract prior knowledge from pretrained LM in the form of synthetic data,
which encode the prior implicitly. We fine-tune the LM to generate an augmented
language, which contains not only text but also encodes both intent labels and slot
labels. The generated synthetic data can be used to train a classifier later. Since
the generated data may contain noise, we rephrase the learning from generated
data as learning with noisy labels. We then utilize the mixout regularization for
the classifier and prove its effectiveness to resist label noise in generated data.
Empirically, our method demonstrates superior performance and outperforms the
baseline by a large margin.

1 INTRODUCTION

Natural language processing has been profoundly impacted by leveraging pretrained large-scale
language models. Many downstream tasks have achieved state-of-the-art performance by fine-tuning
pretrained models (Devlin et al., 2018; Radford et al., 2019; Raffel et al., 2019). The success lies in
the transfer ability of those models trained with large unlabeled corpus, which are typically thought
of learning universal language representations (Howard & Ruder, 2018). Although the wide adoption,
fine-tuning still requires a large dataset to achieve good performance. In some cases, however, it
would be inconvenient, expensive, or even impossible to collect a large dataset. For instance, when
adapting a personal voice assistant to a specific user, it is inconvenient to require the user to label a
lot of utterances.

In this work, we focus on a setting, where we only have access to very limited data from each testing
domains. Learning with limited data is challenging since the modern over-parametrized models
can easily overfit the small training dataset while simple models usually suffer from insufficient
representative power. According to the Bayesian Occam’s razor theory (MacKay, 1992), exploiting
prior information is a principled way of encouraging generalization when faced with limited data. In
this work, we leverage the priors embedded in pretrained language models.

Following the Bayesian view of data augmentation (Zhang et al., 2016; Dao et al., 2019), we express
synthetic data as an implicit form of prior that encodes data and task invariances. In our proposed
approach, prior information is distilled by generating task-specific synthetic data from pretrained
language models. In order to generate task-specific data, we fine-tune the language models over the
small training dataset. The augmented datasets are then used to train the classifiers. The synthetic
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intentlabel Add To Playlist
i mask words Add To Playlist )) Add [ <mask> Cadogan | artist | to the [ 80s Classic Hits | <mask> | list
nput mask span Add To Playlist )) Add <mask> the [ 80s Classic Hits | playlist] list

mask multiple spans Add To Playlist )) Add <mask> | artist | to <mask> Hits | playlist<mask>
output |augmented format Add To Playlist )) Add [ Kevin Cadogan | artist | to the | 80s Classic Hits | playlist | list

Figure 1: Input and output format of the conditional generator.

data embody the prior by teaching the classifier about possible tokens for each label. The generation
process also bears similarity to knowledge distillation (Hinton et al., 2015). Here, we distill prior
knowledge from pretrained language models.

We focus on the tasks of intent classification and slot labeling, which correspond to sentence and token
level classification tasks, respectively. Therefore, we require the synthetic data to contain both intent
and slot labels. To generate text (utterances) and labels simultaneously, we leverage an augmented
language format (Athiwaratkun et al., 2020), where intent and slot label information is embedded in
the generated sentences using an special format (see Fig. D.2). We fine-tune conditional language
models to directly generate the augmented sentences. We test and compare multiple conditional
generation strategies for synthesizing data with legitimate intent and slot labels.

Since we only have access to a very limited data to fine-tune the language model, it is inevitable
that the generated data would contain noise. To resist label noise, we apply a recently proposed
regularization method called mixout (Lee et al., 2019). Mixout is originally proposed to improve
the generalization of large-scale language models. Here, we prove and empirically show that mixout
regularized models are robust to label noise.

Our contributions are as follows: 1) We extract prior knowledge in the form of synthetic data to
improve generalization of classification models 2) We utilize an augmented language format to
simultaneously generate sentences and the corresponding intent and slot labels. 3) We propose two
metrics that measure the correspondence between generated tokens and labels. 4) We reinterpret
mixout as a regularization that resist label noise and prove its generalization bound under mild
assumptions. 5) We significantly outperform BERT-based baselines for joint slot labeling and intent
classification in limited data regime.

2 METHODS

In this section, we formally describe the problem and introduce our proposed method, which employs
three main steps as illustrated in Fig C.1: 1) finetuning of a pretrained encoder-decoder (enc-dec)
language model (our conditional generator) using the small labeled set; 2) generation of synthetic
data; 3) training of the joint classifier using the augmented training set. We detail our conditional
generative model and describe the modifications we made to deal with noisy generations. Finally, we
introduce the evaluation metrics to compare generations and present our training procedure.

Problem Formulation In this work, we are interested in slot labeling and intent classification. We
focus on the limited data regime where a very small training dataset {(z;, s;,v;) }¥; is given. z, s
and y represent sentence, slot labels and intent label respectively. We will build a model f(z;0) =
po(s,y | x) to jointly classify slots and intents for novel sentences z: s*,y* = arg max, , po(s, ¥ |

x). We augment the small training set with synthetic data {(2/, s', ") j-vzll generated from pretrained
language models and train a joint classifier to predict intent and slot labels simultaneously. We will
describe the generative and discriminative components below.

Conditional Generator In this section, we introduce the generative component for drawing new
training instances. First, we describe the augmented language format (Athiwaratkun et al., 2020)
utilized to generate utterances (text) and labels simultaneously. As shown in the last row in Fig. 1, we
use additional markers to indicate the token-spans and their associated labels. The augmented format
can be converted from and to the traditional BIO format without loss of information (see Fig. D.2 in
Appendix). With the training data converted into the augmented format, we can train a generative
model to capture the joint distribution of the utterances and the labels, i.e., p(z, s, y).

There are many options for modeling the joint distributions, such as VAE-based models (Kingma &
Welling, 2013; Yang et al., 2017), autoregressive models (Radford et al., 2019) and GANs (Goodfellow
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et al., 2014; de Masson d’ Autume et al., 2019). In this work, we employ a seq2seq model (Raffel et al.,
2019) due to its verified ability for language modeling. It also gives us the flexibility to condition on
additional information. That is, we essentially model the conditional distributions p(z, s,y | ¢), where
c represents the conditioning information described later. The conditional generation mechanism
enables us to control the generation quality and diversity by varying the conditioning input c. We
explore multiple different types of conditioning: 1) condition on the intent labels; 2) mask out several
words from the augmented sentence at random; 3) mask out a random span from the augmented
sentence; 4) mask out multiple spans. Please refer to Fig. 1 for an illustration.

Sampling and Filtering Sampling from the conditional generator is straight-forward, we just need
to condition on the corresponding inputs. Intent labels are sampled from all possible labels and
transformed to natural words separated by white spaces. Masked conditioning inputs are constructed
by randomly sampling one augmented sentence from the given training set and replacing some tokens
or spans with a mask token. The generated augmented sentences can then be decoded into BIO
format and used to train the downstream models. However, generations could be noisy, some of
them might not follow the exact format of the augmented language, thus cannot be decoded into
the corresponding BIO format; some generations might contain invalid labels. We postprocess the
generations by simply dropping those generations.

Joint Classifier ~After generating the synthetic data, we train a classifier to jointly predict intent
and slot labels using both real and synthetic data. We again utilize a pretrained transformer model
and add two classification heads above the language model backbone. The classification heads and
the backbone are jointly trained with cross entropy loss.

Although we carefully tune the generator and filter the invalid samples to generate high quality data,
it is inevitable to contain noise in the generated data. For example, some tokens might be labeled
incorrectly in the synthetic data. The label noise can be detrimental since modern over-parametrized
models can easily overfit to the noisy labels (Zhang et al., 2016). We rephrase learning with generated
data as learning with noisy labels thus connect it with a well-studied literature (Song et al., 2020). As
a simple modification, we apply a recently proposed regularization, mixout (Lee et al., 2019). Mixout
is originally proposed to improve the generalization of fine-tuning large-scale language models. It has
been shown effective particularly when training data is limited. Here, we provide another perspective
by showing that mixout regularization is naturally robust to label noise. Please refer to Sec. A for
more details.

Training Procedure As our model consists of two separate components, conditional generator
and joint classifier, we would like to tune the generator so that the classifier trained with generated
data can achieve the best performance on validation set. However, it would be difficult to determine
the hyperparameters for generator based on validation set performance, since it requires to train a
classifier till convergence. The likelihood of the validation set cannot be used as a metric, since
some hyperparameters, like the probability of replacing a token, can affect the underlying conditional
distribution p(x, s,y | ¢), and comparing different conditional likelihood is meaningless. Instead,
we propose two new metrics that measure the correspondence between generated tokens and labels.
Our proposed metrics leverage the augmented language format to measure if the token-label joint
distribution matches with the real one. We empirically verify the correlation between those metrics
and the downstream task performance. Hence, we can search hyperparameters for the generator until
it achieves the best metric scores without having to train the classifier. Please see Sec. B for details.

3 EXPERIMENTS

In this section, we evaluate our framework on several public benchmark datasets, including SNIPS
(Coucke et al., 2018), ATIS (Hemphill et al., 1990) and NLUED (Liu et al., 2019). Please see appendix
for preprocessing details. Baseline models include JBERT which directly fine-tune the BERT model
with the small training set to jointly predict the intent and the slots. The classification heads are two
fully connected layers. We also compare to a factorized augmentation strategy similar to (Yoo et al.,
2019) and denote it as G(factor)+JBERT, where the augmentation is performed by first sampling
a sentence from a fine-tuned TS5 model condition on the intent and then obtaining the slot labels
from a fine-tuned BERT classifier with mixout regularization, i.e., p(z, s,y) = p(y)p(z | y)p(s | z).
Other classic data augmentation methods, such as EDA (Wei & Zou, 2019), are not suitable for out
setting since the augmentation may change the slot types. Our proposed methods are denoted as
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Table 1: Slot labeling and intent classification performance with four different sampling ratios.

(a) SNIPS
Slot Labeling (F1) \ Intent Classificaton (Acc.)
0.25% 0.5% 1% 2% [ 025% 0.5% 1% 2%
JBERT 45.96+5.16  62.22+1.64 78.36+1.86 88.94+0.92 | 87.11+8.09 90.96+0.47 96.68+0.40 98.2140.52
G(factor)+JBERT Yoo et al. (2019)  48.34+1.54 64.73+2.15 79.10£1.36  88.87+1.21 | 88.91£3.95 94.66+0.92 96.36+0.82 98.02+0.57
G(intent)+JBERT [ours] 52.26+4.55 7421+3.62 85.33+0.87 89.75+£0.45 | 91.68+2.46 95.21+£229 97.46+0.97 98.43+0.65
G(words)+JBERT [ours] 59.12+4.27  73.304+2.62 84.264+0.64 89.86+0.99 | 91.04+1.59 96.50+0.46 97.71+0.79  98.46+0.37
G(span)+JBERT [ours] 61.24+1.36 75.39+2.76 84.994+1.30 89.27+0.30 | 93.214+3.75 95.36+3.00 97.79+0.46 98.46+0.23
G(multi_spans)+JBERT [ours] 63.00+4.48 7451+1.67 85.03+0.72  90.07+£0.91 | 91.68+0.27 95.25+£0.97 97.57+0.39  98.43+0.30
(b) ATIS
Slot Labeling (F1) \ Intent Classificaton (Acc.)
0.25% 0.5% 1% 2% | 025% 0.5% 1% 2%
JBERT 52.204£2.83  63.25+4.12  71.534+2.52  79.67+£0.84 | 79.96+1.64 83.76+£1.18 87.07+£2.21  90.12+0.64
G(factor)+JBERT Yoo et al. (2019)  53.68+3.74  64.39+3.71  72.6842.93 79.45+£0.90 | 77.994+9.74 86.53+3.31 91.09+1.09 93.59+1.65
G(intent)+JBERT [ours] 55.5242.39 66.48+2.49 74394123 79.71+£1.67 | 70.46+6.21 83.51+5.19 87.29+3.41 90.9940.88
G(words)+JBERT [ours] 61.31£1.66  69.49+2.98 74.97+0.73 81.79+1.90 | 80.43+3.86 84.71+£1.55 88.52+2.45 92.86+1.09
G(span)+JBERT [ours] 58.08+1.45 66.51+£2.38 72.68+£3.08 80.30+1.72 | 76.264+3.12 80.29+539 84.71£1.92 86.51£2.60
G(multi_spans)+JBERT [ours] 58.214£3.38 68.44+2.41 73.63+2.23 81.30+1.04 | 73.26+14.1 83.62+2.45 88.27+1.03 90.30+3.23
(c) NLUED
Slot Labeling (F1 \ Intent Classificaton (Acc.)
0.5% 1% 2% 4% | 0.5% 1% 2% 4%
JBERT 28.58+2.17 39.21+1.37 53.454+1.66 60.93+0.84 | 31.76+1.54 53.42+4.09 72.35+0.52 79.4440.60
G(factor)+JBERT Yoo et al. (2019)  30.34+1.85 39.35+0.95 52.07£2.51 59.62+1.10 | 59.87+0.93 66.89+1.24 74.65+1.64 80.97+0.75
G(intent)+JBERT [ours] 32394296 40.90+£1.90 50.71£1.56 58.26+1.03 | 45244540 55.25+£3.25 72.21+0.82 78.69+1.00
G(words)+JBERT [ours] 39.53+£1.15 42944249 54.124+1.54 60.07£1.35 | 44.63+4.47 58.99+1.79 71.75+£1.78 79.69+1.02
G(span)+JBERT [ours] 42.00+0.95 47.32+1.61 56.11+1.65 60.57+1.08 | 51.97+3.85 64.22+0.96 74.86+1.28 79.764+0.43

G(multi_spans)+JBERT [ours] 38.94+1.97 43.48+0.93 52.36+1.35 59.35£1.46 | 55.11+2.12  60.27+£2.11 72424275 79.86+0.99

G(intent)+JBERT, G(words)+JBERT, G(span)+JBERT and G(multi_spans)+JBERT to repre-
sent models with generator conditioning on intent labels and different masking schemes respectively.
We fine-tune the T5-1arge as the generator and BERT-1arge—cased as the classifier for the
main results. Ablation studies are performed in Sec. F.3. To deal with the small training set size and
noisy labels in generated data, mixout regularization is applied to the classifier in all models. We
generate 500 synthetic data per intent class for SNIPS dataset and 50 for ATIS and NLUED.

Table 1 shows the slot labeling and intent classification performance on SNIPS, ATIS and NLUED.
We conduct experiments with four different sampling ratios to subsample the training set. Intent
classification performance is evaluated by accuracy and the slot labeling performance is evaluated
by F1. Mean and standard deviation are reported from four independent runs. The results are
consistent across different datasets. For slot labeling, the synthetic data can significantly improve
the performance especially when training data is extremely low. For example, with only 0.25% of
the training data, we improve the slot labeling performance on SNIPS from 45.96 to 63.00, which
is a 37.08% relative improvement. Although all generation strategies are useful, conditioning on
masked sentences are more effective than others with low training data. We believe that is because the
masked sentences can provide more diverse context to synthesize the augmented sentences. It also
provides a template so that the generator can leverage the token-label correspondences to generate
faithful outputs. We can also see that using augmented language format gives better results than using
the factorized generation scheme, which we believe is because of the difficulty of fine-tuning the
classification head from scratch with only limited data. Given more real training data, the difference
between different generation strategies gets smaller, which is as expected. For intent classification, the
trends are similar, but the improvement is relatively small since the intent classification is a relatively
simpler task. Using factorized generation is actually competitive, sometimes even better, for intent
classification, because the synthetic sentences are generated directly conditioned on the intent labels.
Fig F.3 (Appendix) shows some generated sentences from our generator conditioned on augmented
sentences masked with multiple spans. The generation is diverse and fluent. Thanks to the powerful
pretrained models, our generator is capable of generating phrases beyond the training data. Please
see Sec. F.2 for additional studies about our proposed metrics that evaluate the generation quality.

4 CONCLUSION

In this work, we present a framework to extract prior information from pretrained language models to
improve spoken language understanding. We express the prior knowledge in the form of synthetic
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data and propose to use an augmented language format to generate both sentences and intent and
slot labels simultaneously. The generated data as well as the small real dataset are used to fine-tune
a classifier to predict intent and slot labels jointly. We also utilize the mixout regularization for
classifiers to resist label noise in generated data. On three public benchmark datasets, we achieve
superior performance over baselines. For future directions, we will apply the augmented language
format for other tasks, such as named entity recognition. We will also explore the classical few-shot
setting, where we have other related tasks to accumulate common knowledge.
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