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ABSTRACT

Privacy concerns around sharing personally identifiable information are a major
practical barrier to data sharing in medical research. We utilize Generative Adver-
sarial Networks (GANS) to create medical imaging datasets consisting entirely of
synthetic patient data. We assess the quality of synthetic data generated by two
GAN models for chest radiographs with 14 different radiology findings and brain
computed tomography (CT) scans with six types of intracranial hemorrhages. We
measure the synthetic image quality by the performance difference of predictive
models trained on either the synthetic or the real dataset. We find that synthetic
data performance disproportionately benefits from a reduced number of unique
label combinations and determine at what number of samples per class overfitting
effects start to dominate GAN training. We conducted a reader study in which
trained radiologists do not perform better than random on discriminating between
synthetic and real medical images for both data modalities to a statistically signif-
icant extent. Our open-source benchmark offers valuable guidelines and outlines
practical conditions under which insights derived from synthetic medical images
are similar to those that would have been derived from real imaging data.

1 INTRODUCTION

Sharing sensitive data under strict privacy regulations remains a crucial challenge in advancing med-
ical research (Lol [2015)), especially due to the potential abuse of personal information (Haas et al.,
2011). While there have been several large-scale research collaborations to pool and de-identify
medical data for open-source research purposes (Bycroft et al.,|2018}; (Clark et al., 2013)), most data
is still isolated in hospitals and laboratories due to privacy concerns (van Panhuis et al., 2010).

In medical research, information is often analysed at the level of cohorts rather than individuals. A
potential solution to the medical data sharing bottleneck, is therefore, the generation of synthetic
patient data that, in aggregate, has similar statistical properties to those of a source dataset without
revealing sensitive private information. Among other generative deep learning models (Vahdat &
Kautz, 2020), GANs have demonstrated the capability to generate realistic, high-resolution imaging
datasets (Karras et al., 2019; Brock et al., 2019). GANs have been utilized within several medical
domains, among others, for the generation of retinal images (Costa et al., 2018]), skin lesions (Ali
et al., 2019), hematoxylin and eosin (H&E) stained breast cancer tissue (Quiros et al., [2020), x-ray
mammographs (Zhou et al., 2020) or chest radiographs (Han et al.| 2019).

To the best of our knowledge, there is no work aimed at providing a comprehensive benchmark
analysis for the generation of synthetic medical images. Our contributions can be summarized as
follows: 1) We develop an open benchmark to analyse the generation of synthetic medical images
when varying the number of classes, the number of samples per class, and the spatial resolution. 2)
We present valuable guidelines for the effective generation of medical image datasets by evaluating
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our open-source benchmark. 3) We analyse privacy considerations, assess the causal contributions
of predictive models trained on the synthetic datasets, and conduct a large-scale reader study in
which trained radiologists discriminate between real and synthetic medical images.

2 APPROACH

We randomly split each patient cohort into training, validation and test set within strata of radiology
findings. We developed all GAN models on the training datasets and stopped GAN training when the
Fréchet Inception Distance (FID) score (Heusel et al., 2017 converged @) Next, we generated
synthetic data for the train and validation folds by conditioning on the respective labels. In all
settings, we used a pre-trained densenet-121 Convolutional Neural Network (CNN) (Huang et al.,
2017) as a predictive model, with the mean area under the receiver operating characteristics curve
over all labels (AU () as the evaluation metric . For each classifier, we stopped training when
the validation AUC converged, after which we evaluated both on the separate, real data test fold to
compute the difference in performance: AU C\eal — AU Csyn. We repeated all experiments multiple
times with varying random initialisation to perform statistical tests (A.7).

The prog-GAN model refers to the progressive GAN as a reference model (Karras et al., |2018),
still commonly used in medical image generation (Ali et al., 2019; |[Han et al., 2019). The cpD-
GAN refers to our novel model, based on the prog-GAN with changes to the architecture and the
discriminator and generator conditioning (A.4.2). To assess the generalisation capabilities, there is
no fine-tuning across different benchmark settings, only when increasing the resolution, we make
the necessary changes to the network architectures.

The model performance is evaluated across three benchmark dimensions, detailed in Table|l| First,
we varied the number of classes (unique binary label combinations) included in the dataset. Next,
we fixed the present classes and assessed how changes in the number of samples per class impacted
performance. While we evaluated the first two benchmark settings at a resolution of 32 x 32 pixels,
we finally analysed how increasing the resolution to 64 x 64 and 128 x 128 pixels affected our
scores. We only performed changes across a single dimension at a time to ensure no confounding
factors can impact training.

For further insights we compared the predictive models’ feature importance when trained on either
real or synthetic datasets, estimated with the method of [Schwab & Karlen| (2019) (A.9). We ad-
dressed privacy concerns by analysing differences between synthetic images and the most closely
matching nearest neighbour images from the entire training dataset (A.8). Finally, we conducted a
reader study in which we asked trained radiologists to label a mixed set of 100 images for both data
modalities as real or synthetic (cpD-GAN) at a resolution of 128 x 128 pixels and[A.T2).

3 RESULTS

Both models are stable across all benchmark settings with no collapses. The prog-GAN achieved
an average AUCea1 — AUCyn score of 0.0495 (£0.0276) across all settings on chest x-rays and
0.1367 (£0.0324) on brain scans. These scores were improved with the cpD-GAN that achieves
0.0206 (£0.0100) on the chest x-rays and 0.0650 (4-0.0198) on the brain scans.

3.1 IMPACT OF NUMBER OF CLASSES

The classification performance on both real and synthetic data increased when we lowered the num-
ber of classes present in the dataset. We reason that the complexity of the predictive task decreases
with fewer label combinations, resulting in higher AUC scores. However, as can be seen in Figure
and , the differences in AUC'ea1 — AU Cygyy scores also decreased when lowering the num-
ber of classes. For both datasets, the differences between the extreme cases (20 and 2 classes for
the chest x-rays and 10 and 2 classes for the brain CT scans) for the cpD-GAN were statistically
significant (p-values < 0.0001). The relative performance increase was even more pronounced for
the prog-GAN. The trend of improvement in classifier performance when trained on synthetic data
versus the performance when trained on real data shows that GAN models and the generated data
quality disproportionately benefited from a smaller label space, thereby confirming the significance
of the class conditioning methods. One crucial difference between the two evaluated GAN models
is the improved label conditioning mechanism used with the cpD-GAN (Miyato & Koyama, |[2018]).
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Figure 1: Benchmark results. In each figure, AUC ., scores are indicated by the black line
with the shaded area representing the standard deviation across repeated experiments. The bar plots
represent the AU Clyy, scores generated by the cpD-GAN (blue) and prog-GAN (red), while the error
bars indicate the standard deviation. The subfigures show the changes in predictive performance
observed when varying the number of classes a) for chest x-rays and b) for brain CTs, the number
of samples per class ¢) for chest x-rays and d) for brain CTs, and the image resolution e) for chest
x-rays and f) for brain CTs.

Due to its inferior conditioning, the prog-GAN model benefited from a lower class number to a
greater extent. Two important practical guidelines for synthetic data generation in medical imag-
ing can be derived from these results: 1) Even though rare findings may be of particular medical
interest including them could hurt performance and 2) research on the conditioning mechanism of
GAN models should be prioritized as it is likely to lead to significant performance improvements,
especially for downstream tasks.

3.2 IMPACT OF NUMBER OF SAMPLES PER CLASS

When we lowered the number of samples per label combination included in each dataset, the predic-
tive performances obtained when training on real and synthetic data remained similar until approxi-
mately 3,000 samples per class, see[Ic and[IJd. These results indicate that GAN model performance
may be stable when the training data consists of at least 3,000 samples per class. After that both
the AUC\ea1 and AU Cgyy scores started to decrease substantially. However, we observed a rela-

tive performance improvement, meaning decreasing AU C'rcal — AU Cyn scores for the cpD-GAN,
when moving towards low numbers of samples. Despite the heightened variance in predictive per-
formance, the difference in the scores between the extrema (5,950 and 200 samples per class for
the chest x-rays and 5,400 and 100 samples per class for the brain CT scans) was statistically sig-
nificant (p-values < 0.001). The observed trend in performance in the low data regime indicates
the growing effects of label overfitting during GAN training: Given a low number of samples, the
variation within real images becomes too low, and the generative model may resort to memorizing
label information in the training set instead of learning the real data distribution. This is supported
by the fact that the FID scores increase towards low sample regimes indicating a decreasing image
quality. In practice this means that no guarantees on the label and image consistency of synthetics
from rare classes can be given.

3.3 IMPACT OF RESOLUTION

When increasing the resolution from 32 x 32 pixels to 128 x 128 pixels, all AUC' scores improved,
as shown in Figure and . For both models the AUC\ca1 — AUCyn scores either remain similar
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or increase by a small margin on both datasets. This is in agreement with GAN model training at
higher resolutions, which becomes more difficult due to the emergence of fine-scale details in the
images. The analysed resolution levels are acceptable for evaluating the predictive models as most
deep learning systems downsample medical images to reduce the computational requirements. In
clinical practice, however, radiographs are analysed at a much higher resolution, and particularly
fine-scaled details are essential for the accurate diagnosis of radiology findings. GAN models and
other generative approaches can generate realistic images a higher spatial resolutions (Brock et al.,
2019; |Vahdat & Kautz, 2020), so scaling up GAN training for medical image generation is an im-
portant direction for future work.

3.4 FURTHER EVALUATION

In Figure[2h and[2p , we show randomly sampled synthetic example images from the best performing
cpD-GAN for both datasets at a resolution of 128 x 128 pixels. Below each synthetic image, we
show the most similar real image (nearest neighbour) out of the entire training dataset. From a
visual assessment, there appears to be no noticeable quality difference between the real and synthetic
images. By comparing synthetics and nearest matching neighbours we demonstrate that the cpD-
GAN model is not simply memorizing training data, and is therefore likely to preserve private,
potentially sensitive information.

a. Synthetic cpD-GAN Images

(TN,

c. Image d. Real e. Synthetic
b. Real Nearest Neighbours

i

Figure 2: Synthetic images, real nearest neighbours and feature importance maps (deeper red colour
indicates regions with larger causal contribution): a) cpD-GAN synthetics. b) Real nearest neigh-
bours from training data. ¢) Real test images. d) Real images feature importance. €) Synthetic
images feature importance.

To gain more interpretability, we show the feature importance at a resolution of 128 x 128 pixels
of real test images in Figure 2k, Pk and 2f. Instead of randomly sampling real test images, we
chose some of the real nearest neighbours from [Zb. The observed results support the hypothesis
that the predictive models trained on synthetic data from the cpD-GAN assign importance to similar
image features as those trained on real data. We note that none of the feature importance maps were
identical, which we expected given that the observed difference in predictive performance between
classifiers trained on real and synthetic data was greater than zero at this resolution.

In our large scale reader study, we found that radiologists were unable to achieve a higher accuracy
than a classifier assigning labels at random with an expected accuracy of 50% (p < 0.05 for chest
radiographs, p < 0.01 for brain CT scans). The presented results indicate that trained clinicians
cannot discriminate between real and synthetic images in the aforementioned setting, which further
substantiates that both the general quality and label information in the synthetic images are realistic.

4 CONCLUSION

With our comprehensive benchmark evaluation we derived important insights and valuable guide-
lines for the generation of synthetic medical imaging data. While there remain open questions for
further research, our results indicate that synthetic data sharing may in the future become an at-
tractive and potentially privacy-preserving alternative to sharing real patient-level data in the right
settings.
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A APPENDIX

A.1 ACKNOWLEDGEMENTS

PS is an employee and shareholder of GlaxoSmithKline plc.

A.2 DATA AVAILABILITY

Both datasets are publicly available and free to download for any registered user.
The CheXpert chest radiograph dataset (Irvin et all [2019) can be accessed at
https://stanfordmlgroup.github.io/competitions/chexpert/ and the RSNA Intracranial Hemor-
rhage dataset (Flanders et al. |2020) is available at https://www.kaggle.com/c/rsna-intracranial-
hemorrhage-detection.

A.3 DATASETS AND PRE-PROCESSING

The CheXpert dataset consists of 224, 316 chest radiographs of 65, 240 patients, collected from ra-
diographic examinations of the chest at the Stanford Hospital, between October 2002 and July 2017
(Irvin et al.l 2019)). In the dataset study, an automatic labeling tool was used to identify and classify
the certainty of the presence of 14 observations from the radiology report. We turned uncertain la-
bels into positives, to make use of all data, resulting in a binary multi-label dataset, where a large
number of label combinations can co-occur.

The RSNA Intracranial Hemorrhage Dataset is composed of computed tomography studies supplied
by four research institutions and labeled with the help of The American Society of Neuroradiology
(Flanders et al., 2020). It consists of 752,803 CT scan slices of the head from 18,938 unique
patients and the corresponding probabilities for the presence of 5 different hemorrhage types and
the no finding label. For consistency, we turned any probability p,, > 0 into a positive label y; = 1
and else y; = 0, also resulting in a binary multi-label dataset. Since 644,874 (85.7%) of CT
scans are without any intracranial hemorrhage, we undersampled the no-finding class, resulting in a
balanced dataset where at least 50% of images show some form of hemorrhage.

We randomly split the entire patient cohort into training (80%), validation (10%), and test folds
(10%) within strata of radiology findings for each dataset. We excluded chest x-rays of classes with
fewer then 256 samples, resulting in 117,168 train images (44, 153 patients), 15,318 validation
images (5,519 patients) and 14, 687 test images (5, 520 patients). For the hemorrhage dataset we
removed label combinations below a frequency of 100, resulting in 173,271 train images (15, 133
patients), 22, 095 validation images (1, 892 patients), and 20, 500 test images (1, 892 patients).


https://stanfordmlgroup.github.io/competitions/chexpert/
https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection
https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection
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Dataset Information Benchmark | Resolution | muabers | Miabel comb | Tur Nyal/te | Mper label comb
Chest Radiographs Classes 32 x 32 9 20 29000 | 3800 1450
8 15 24000 | 2850 1600
Data Pool: 5 10 20000 1900 2000
Ny (Npar) = 117168 (44153) 5 6 13800 | 1140 2300
Nt (Npat) = 15318 (5519) 5 4 15600 | 760 3900
Nte (Npar) = 14687 (5520) 4 2 12600 | 380 6300
Samples 32 %32 4 3 17850 | 2250 5950
All Labels: 4 3 13500 | 2250 4500
Enlarged Cardiomediastinum, 4 3 9000 2250 3000
Cardiomegaly, Lung Opacity, 4 3 4500 2250 1500
Lung Lesion, Edema, 4 3 3000 2250 1000
Consolidation, Pneumonia, 4 3 1500 2250 500
Atelectasis, Pneumothorax, 4 3 1200 2250 400
Pleural Effusion, Pleural Other, 4 3 600 2250 200
Fracture, Support Device, Resolution | 32 x 32 14 138 117168 | 8000 256 — 7586
No Finding (pixels) 64 x 64 14 138 117168 | 8000 256 — 7586
128 x 128 | 14 138 117168 | 8000 256 — 7586
Brain Hemorrhage CTs Classes 32 x 32 5 10 25000 | 3000 2500
5 8 24960 | 2400 3120
Data Pool: 5 6 25020 1800 4170
Ny (Npar) = 173271 (15133) 4 4 25000 | 1200 6250
Not (Npat) = 22095 (1892) 2 2 25000 | 600 12500
Ny (Npar) = 20500 (1892) Samples 32x32 |5 6 32400 | 3000 | 5400
5 6 27000 3000 4500
All Labels: 5 6 18000 | 3000 3000
Epidural, Subarachnoid, 5 6 9000 3000 1500
Subdural, Intraparenchymal, 5 6 6000 3000 1000
Intraventricular, No Finding 5 6 3000 3000 500
5 6 1800 3000 300
5 6 600 3000 100
Resolution | 32 % 32 5 20 117168 | 8000 155 — 85876
(pixels) 64 x 64 5 20 117168 | 8000 155 — 85876
128 x 128 | 5 20 117168 | 8000 155 — 85876

Table 1: All benchmark settings. Dataset information summarizes the total available data for each
dataset after preprocessing. miqpers refers to the number of labels. mgper comp refers to the number
of unique label combinations. ng,., 1., Nt refers to the total number of training, validation and test
samples. Nper 1abel comp refers to the number of training samples per unique label combination.

We developed the resolution benchmark for both datasets on the aforementioned setting. For the
class benchmarking, we gradually reduced the number of clinical finding combinations present in
the dataset, while keeping the total number of training images constant via over-sampling. When
benchmarking the effect of samples per clinical finding, we fixed the number of classes and gradually
decreased each class’s frequency. Table[I|gives a complete summary of all dataset settings, the entire
set of labels, the size of training, validation and test sets, and information on remaining labels and
samples per class.

A.4 GAN MODEL DEVELOPMENT
A.4.1 PROG-GAN

We used the prog-GAN model as originally proposed in (Karras et al.l 2018)), as it is still regularly
used for generating medical images (Ali et al., 2019 |[Han et al.,2019). We analysed several hyper-
parameter settings, mainly different batch sizes, learning rates, number of feature channels and
optimiser settings, but we determined that the original parameters proposed in (Karras et al., [2018])
performed best. We began training at a spatial resolution of 8 x 8 pixels, which we determined to
be the lowest resolution at which meaningful information is still visually apparent in downsampled
images. Each transition and stabilisation phase at a resolution of 32 x 32 pixels lasted until the
discriminator had seen 1.4M real images, which corresponded to 1.4M fake images as the number
of discriminator updates per generator step is n¢rizic = 1. At a resolution of 64 x 64 and 128 x 128
pixels, we reduced the number of real images per phase to 1M.

A.4.2 cpD-GAN

We developed the cpD-GAN based on the prog-GAN with several important improvements that we
highlight below. Please see above or (Karras et al., 2018) for details on the architecture and methods
if not explicitly stated. Inspired by Style-GAN (Karras et al.,[2019; Karras et al.,2019), we dropped
progressive growth as we observed that it was not necessary for stable training. This allowed us to
experiment with new architectures, where output skip connections within the image feature space
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of the generator and standard residual connections in the discriminator improved the performance
the most. We achieved significantly lower AUC' a1 — AUy, scores when replacing the auxil-
iary classifier conditioning with a projection based discriminator: In the last discriminator layer,
the inner product between the label vector y and the feature vector is computed as the final output,
resulting in a conditioning mechanism that respects the role of the conditional information in the
underlining probabilistic model (Miyato & Koyama, [2018). Inspired by conditional batch normal-
isation (de Vries et al., |2017), we modified the pixel-wise feature vector normalisation after each
generator convolution by conditioning it on a label and noise dependent scaling and bias parameter:

by = = '+ B (M
z,Y "
VUN S5 ady)? +e

where a;_’y and b;y are the original and normalised feature of channel i in pixel (z,y) and € = 1075,
The scaling parameter is defined as v = Wi [z;y] + by and the bias parameter as 5 = Wa[z;y] +
by, where W; and b; are trainable weight matrices and vectors, while [z;y] refers to the vector
concatenation of the random normal input noise z and label y. Figure [3] shows the overall model
structure and a detailed description of a generator resolution block.

We evaluated various loss functions, such as the logistic GAN loss with and without R1 or R2
regularisation, the hinge loss with and without gradient penalty, or the non-saturating GAN loss
(Mescheder et al., 2018)), but the Wasserstein loss with gradient penalty worked best. Replacing a
specific convolutional layer in both the generator and discriminator by a normal, sparse, or non-local
self-attention layer (Wang et al.| [2018) did not improve performance. Neither consistency regular-
isation (Zhang et al.| [2020), nor matching the gradients of an auxiliary classifier by minimisation
of the cosine-distance when predicting the labels of fake and real images resulted in better scores.
We analysed many hyper-parameters, among others the number of feature channels, batch sizes, and
learning rates. The performance peaked for 512 feature channels, a batch size of 256 and learning
rates of 0.005 with one discriminator update per generator update (n¢pitic = 1).

Generator with Skip-Connections Generator Resolution Block
@«— tRGB —  32x32 ( T
Up normalization <
Z’ y
tRGB — 64 x 64 T
Up l

?— tRGB — 128 x 128 LReLU

i Residiual Discriminator 3 x 3 convolution

T

fRGB

normalization (—7’ y
Down 128 x 128 T
bﬁ LReLU
Down 64 x 64 T
bﬁ 3 x 3 convolution down
Down 32 x 32 L T

Figure 3: Network architecture and generator block. Left: In the generator, output skip con-
nections in the image feature space are included after each resolution block, while the discriminator
blocks have residual connections. Up and Down refer to nearest neighbour upsampling and down-
sampling by average pooling while fRGB and fRGB refer to the 1 x 1 convolution mappings to and
from the image space. Right: The first convolution in each generator block doubles the spatial res-
olution via nearest neighbour upsampling and reduces the number of feature channels (if needed).
Each pixel-wise feature vector normalisation layer is conditioned on the label information y and
random normal noise vector z. The Leaky-ReLU non-linearity is used as an activation function.
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A.5 GAN TRAINING

We used the Adam optimiser for all GAN models and the hyper-parameters as proposed in (Kar-
ras et al.l 2018} [Brock et al.l 2019)), except for the learning rates that we fine-tuned as mentioned
in We stopped training in all settings when the Fréchet Inception Distance (FID) between
10, 000 real and synthetic images converged. The FID score is a commonly used metric to compare
the visual quality between two sets of images and allows for an unbiased GAN training evaluation
(Heusel et al., 2017). We ran all models for a minimum number of steps, until the discriminator
had seen as many real images as the prog-GAN discriminator after the final stabilisation phase. At
a resolution of 32 x 32 pixels, each progressive phase lasted until the discriminator had seen 1.4M
real images, resulting in a minimum number of 7M real images for the other models. For 64 x 64
and 128 x 128 pixels, we lowered the number of images per phase to 1M, resulting in a minimum
number of images of 7M and 9M, respectively. At this point, we computed the FID score after every
400T real images, and if there was no improvement for two consecutive evaluations, we stopped
training. We stopped all repetitions for each experiment at the same step as the first model to get
comparable results.

A.6 PREDICTIVE MODEL DEVELOPMENT AND TRAINING

In all settings, we used a pre-trained densenet-121 convolutional neural network as the predictive
model (Huang et al., 2017). We added a randomly initialised fully connected layer with sigmoid
activation to the pre-trained model for classification with the binary cross-entropy loss. We resized
the input images to match the densenet-121 spatial input resolution of 224 x 224 pixels. To make
training as similar as possible across different benchmark settings, we used a maximum number of
5000 images per epoch with a batch size of 48. In settings where the total number of samples is
below 5000, the number of images per epoch is accordingly lower. After each epoch, we computed
the area under the receiver operating characteristic curve (AUROC) for each label in all validation
data samples. We reduce the initial learning rate of 0.0001 by a factor of 10 if the mean validation
AUROC (AUC ;) across all labels does not improve after two consecutive epochs (patience of 2).
If the AUC,,; does not improve for a patience of 3 epochs, we stopped training. To compute delta
scores, we tested all models on the held-out, real data test set.

A.7 STATISTICAL TESTS FOR BENCHMARK

We repeated every experiment of our benchmark with at least four different random initialisation
of the entire training and evaluation pipeline, allowing us to compute the standard deviation for
each setting across repetitions. This is necessary as different parameter initialisation resulting
from different random seeds can substantially impact the training of deep learning systems. For
the number of classes benchmark, we repeated the cpD-GAN training and subsequent synthetic
classification as well as the real data classification for 10 different random initialisation for both
datasets at the extrema: For 20 and 2 classes for the chest x-rays and 10 and 2 classes for brain
CT scans. Subsequently we performed the one-sided, parametric-free, Mann—Whitney U test on
the AUC\ea1 — AUC'syy scores between the extrema to determine whether there is a statistically
significant difference. We followed the same approach for the samples per class benchmark with
20 repetitions at different random initialisation: For 5,950 and 200 samples per class for the chest
x-rays and 5,400 and 100 samples per class for brain CT scans. Here we repeated both the early-
stopping cpD-GAN experiments, as well as the overfitting version. We once again performed the
one-sided, parametric-free, Mann—Whitney U test on the AUCea1 — AUy scores between the
extreme settings to determine the statistical significance.

A.8 NEAREST NEIGHBOURS

To analyse differences between our generated medical images when compared to the training data,
we computed the nearest neighbours for a set of randomly sampled synthetics. For both datasets, we
used the synthetic images generated by the cpD or prog-GAN model at a resolution of 128 x 128
pixels with the lowest AUC\ea1 — AUCyn scores. We used the predictive model trained on real
data at the same resolution level to find the final dense layer representation for each synthetic image;
a 1,024 dimensional vector. We compute the same representation for all real training images and
determine the pair of synthetic and real images for which the cosine distance between the final
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densenet representations is minimal. Using a measure of similarity in the predictive model’s feature
space results in a more reliable determination of nearest neighbours that exploits invariances to shifts
and rotations within the image space of the chest radiographs or brain scans.

A.9 FEATURE IMPORTANCE

We computed the causal contribution of image neighbourhoods towards the label prediction with the
method of Schwab & Karlen|(2019). More precisely, we successively zero masked regions of 2 x 2
pixels in the input image and computed the new, increased predictive model loss. If the masking of
a particular neighbourhood resulted in a significant loss increase, the region had accordingly higher
importance. All regions were masked for each input image of 224 x 224 pixels after 12, 544 repeti-
tions. To determine the feature importance we subtracted the original model loss and normalised the
attribution map. Similar causal contribution maps indicate a similar quality and structure between
real and synthetic images, leading to predictive models that attribute the same regions with high
feature importance.

A.10 READER STUDY

We conducted the reader study by asking trained radiologists to label a set of 100 images for both
data modalities as real or synthetic at a resolution of 128 x 128 pixels with a web-based labeling
tool (Labelbox). Each set consisted of 50 randomly sampled real and synthetic images, generated
by the best performing cpD-GAN. Participants were told that each individual image was sampled
at random to avoid any bias during evaluation, without knowledge about the total number of reals
and synthetics. For the chest x-rays, 11 radiologists participated, while 9 radiologists labeled the
brain CT sets. From each labeled set we computed the values for true reals (T'R), false reals (F'R),
true synthetics (7'S) and false synthetics (F'S), to determine the classification accuracy acc =
#%. Next, we performed the one-sided, non-parametric Wilcoxon signed-rank test
to assess whether the distribution of accuracies is equal or less than the mean accuracy of a fully
random classifier with ace = 0.5 (50%).

10
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A.11 MORE FIGURES

A.11.1 cprD-GAN

a. Synthetic cpD-GAN Chest Images
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Images
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c. Synthetic cpD-GAN Brain

018

d. Real Nearest Neighbours
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Figure 4: More randomly sampled synthetic images from the cpD-GAN and nearest neighbours from all
real training images at a resolution of 128 x 128 pixels. a) Synthetic chest radiographs. b) Nearest matching
real images found in the chest radiograph training set. ¢) Synthetic brain computed tomography (CT) scans. d)
Nearest matching real images found in the brain CT training set.
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a. Real Test Images
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b. Attribution of Predictive Model (Real)

c. Attribution of Predictive Model (cpD-GAN)
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d. Attribution of Predictive Model (prog-GAN)

Figure 5: More feature importance maps of predictive models. Deeper red colour indicates regions that
have a larger causal contribution to the label prediction. a) Real test images at 128 x 128 resolution. All
displayed images are without any clinical finding. b) Feature importance of predictive model trained on real
data. ¢) Feature importance of predictive model trained on synthetic data generated by the cpD-GAN. d) Feature
importance of predictive model trained on synthetic data generated by the prog-GAN.

A.11.2 PROG-GAN

a. Synthetic prog-GAN Chest Images

A

b. Real Nearest Neighbours

4

c. Synthetic prog—GAN Brain Images

ﬂ | .

d. Real Nearest Neighbours

Figure 6: Randomly sampled synthetic images from the prog-GAN and nearest neighbours from all real
training images at resolution of 128 x 128 pixels. a) Synthetic chest radiographs. b) Nearest matching real
images found in the chest radiograph training set. ¢) Synthetic brain computed tomography (CT) scans. d)
Nearest matching real images found in the brain CT training set.
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A.12 DETAILS ON READER STUDY

The detailed confusion matrices and accuracies from the reader study are shown in Table 2| and

Actual

Radiologist
Real Synthetic
Real TR=256(x71) | FS=244(£7.1)
Synthetic | FR =31.0 (£8.2) | TS = 19.0 (£8.2)

Accuracies of Radiologist Labels

[0.45 [ 0.52 [ 0.45 [ 0.52 [ 0.50 | 0.25 [ 0.49 | 0.39 | 0.40 | 0.55 | 0.39 |

Table 2: Chest radiographs reader study. Top: Means and standard deviation from 11 trained
radiologists for real and synthetic images at 128 x 128 resolution: T'R = True Reals, FR =
False Reals, T'S = True Synthetics, F'S = False Synthetics. Bottom: Computed accuracies from

radiologist labels.

Actual

Radiologist
Real Synthetic
Real TR =252 (£35) | FS =248 (£3.5)
Synthetic | FR =30.3 (£5.8) | TS = 19.7 (£5.8)

Accuracies of Radiologist Labels

[0.51 [ 0.45 [ 0.44 | 0.44 | 0.46 | 0.50 | 0.48 [ 0.36 | 0.40 |

Table 3: Brain CT scans reader study. Top: Means and standard deviation from 9 trained ra-
diologists for real and synthetic images at 128 x 128 resolution: T'R = True Reals, FFR =
False Reals, T'S = True Synthetics, 'S = False Synthetics. Bottom: Computed accuracies from

radiologist labels.
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