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ABSTRACT

In differential privacy (DP), a challenging problem is to generate synthetic datasets
that efficiently capture the useful information in the private data. The synthetic
dataset enables any task to be done without privacy concern and modification to
existing algorithms. In this paper, we present PrivSyn, the first automatic syn-
thetic data generation method that can handle general tabular datasets (with 100
attributes and domain size > 2500). PrivSyn is composed of a new method to
automatically and privately identify correlations in the data, and a novel method
to generate sample data from a dense graphic model. We extensively evaluate
different methods to demonstrate the performance of our method.

1 INTRODUCTION

Differential privacy (DP) (Dwork, 2006) has been accepted as the de facto notion for protecting
privacy. A number of companies and government agencies has used DP for privacy-preserving data
analysis. Previous work on DP mostly focuses on designing tailored algorithms for specific data
analysis tasks. However, this paradigm is time consuming, requires a lot of expertise knowledge,
and is error-prone. One promising solution to address this problem is generating a synthetic dataset
that is similar to the private dataset while satisfying differential privacy. As additional data analysis
tasks performed on the published dataset are post-processing, and do not consume additional privacy
budget. Furthermore, existing algorithms for performing data analysis do not need to be modified.

The most promising existing method for private generation of synthetic datasets uses probabilis-
tic graphical models. PrivBayes (Zhang et al., 2017) uses a Bayesian network. It first privately
determines the network structure, then obtains noisy marginals for the Conditional Probability Dis-
tribution of each node. More recently, PGM, which uses Markov Random Fields, was proposed
in (Mckenna et al., 2019). In 2018, NIST hosted a Differential Privacy Synthetic Data Chal-
lenge (NIST), PGM achieves the best result. Approaches that do not use probabilistic graphical mod-
els either are computationally inefficient or have poor empirical performance. However, PrivBayes
and PGM have two limitations. First, as a graphical model aims to provide a compact representa-
tion of joint probability distributions, it is sparse by design. Once a structure is fixed, it imposes
conditional independence assumptions that may not exist in the dataset. Second, since each model
is sparse, the structure is data dependent and finding the right structure is critically important.

Our Contributions. In this paper, we propose PrivSyn, for differentially private synthetic data
generation. Instead of using graphical models as the summarization/representation of a dataset,
we propose to use a set of large number of low-degree marginals to represent a dataset. For
example, in the experiments, given around 100 attributes, our method uses all one-way marginals
and around 500 two-way marginals. A two-way marginal (specified by two attributes) is a frequency
distribution table, showing the number of records with each possible combination of values for the
two attributes. At a high level, graphical models can be viewed as a parametric approach to data
summarization, and our approach can be viewed as a non-parametric one. The advantage of our
approach is that it makes weak assumptions about the conditional independence among attributes,
and simply tries to capture correlation relationships that are in the dataset.
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Concretely, we develop a method that iteratively update a synthetic dataset to make it match
the target set of marginals. When the number of attribute is small enough so that the full con-
tingency table can be stored and manipulated directly, one can use methods such as multiplicative
update (Arora et al., 2012) to do this. However, with tens or even over one hundred attributes, it is
infeasible to represent the full contingency table. The key idea underlying our approach is to view
the dataset being synthesized as a proxy of the joint distribution to be estimated, and directly manip-
ulate this dataset. In particular, given a set of noisy marginals, we start from a randomly generated
dataset where each attribute matches one-way marginal information in the set, and then gradually
“massage” the synthetic dataset so that its distribution is closer and closer to each pairwise marginal.
We model this problem as a network flow problem and propose Graduate Update Method (short for
GUM), a method to “massage” the dataset to be consistent with all the noisy marginals. We be-
lieve that GUM can be of independent interest outside the privacy community. Essentially, it can be
utilized more broadly as a standalone algorithm and it allows us to generate synthetic dataset from
dense graphical models.

2 PRELIMINARIES

2.1 DIFFERENTIAL PRIVACY

The notion of differential privacy (Dwork et al., 2006) guarantees that any single element in a dataset
has only a limited impact on the output.
Definition 1 ((ε, δ)-Differential Privacy). An algorithmA satisfies (ε, δ)-differential privacy ((ε, δ)-
DP), where ε > 0, δ ≥ 0, if and only if for any two neighboring datasets D and D′, we have

∀T ⊆Range(A) : Pr [A(D) ∈ T ] ≤ eε Pr [A(D′) ∈ T ] + δ,

where Range(A) denotes the set of all possible outputs of the algorithm A.

Gaussian Mechanism. There are several approaches for designing mechanisms that satisfy (ε, δ)-
differential privacy. In this paper, we use the Gaussian mechanism. The approach computes a
function f on the dataset D in a differentially privately way, by adding to f(D) a random noise.
The magnitude of the noise depends on ∆f , the global sensitivity or the `2 sensitivity of f . Such

a mechanism A is given by A(D) = f(D) +N
(

0,∆2
fσ

2I
)

, where ∆f = max
(D,D′):D'D′

||f(D) −

f(D′)||2, N (0,∆2
fσ

2I) denotes a multi-dimensional random variable sampled from the normal

distribution with mean 0 and standard deviation ∆fσ, and σ =
√

2 ln 1.25
δ /ε.

2.2 PROBLEM DEFINITION

In this paper, we consider the following problem: Given a dataset Do, we want to generate a
synthetic dataset Ds that is statistically similar to Do. Generating synthetic dataset Ds allows data
analyst to handle arbitrary kinds of data analysis tasks on the same set of released data, which is
more general than prior work focusing on optimizing the output for specific tasks (e.g., (Qardaji
et al., 2014; Xiao et al., 2010; Abadi et al., 2016; Li et al., 2010)). More formally, a dataset D is
composed of n records each having d attributes. The synthetic dataset Ds is said to be similar to Do

if f(Ds) is close to f(Do) for any function f . In this paper, we consider three statistical measures:
marginal queries, range queries, and classification models. In particular, a marginal query captures
the joint distribution of a subset of attributes. A range query counts the number of records whose
corresponding values are within the given ranges. Finally, we can also use the synthetic dataset to
train classification models and measure the classification accuracy.

3 OUR PROPOSAL

3.1 METHOD OVERVIEW

To generate the synthetic dataset in a differentially private way, one needs to first transform the task
to estimate a function f with low sensitivity ∆f . One straightforward approach is to obtain the noisy
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full distribution, i.e., the joint distribution of all attributes. Given the detailed information about the
distribution, one can then generate a synthetic dataset by sampling from the distribution. However,
when there are many attributes in the dataset, computing or even storing the full distribution requires
an exponentially large space. To overcome this issue, one promising approach is to estimate many
low-degree joint distributions, also called marginals, which are distributions of only a subset of
attributes. More specifically, to generate a synthetic dataset, there are four steps: (1) marginal
selection, (2) noise addition, (3) post-processing, and (4) data synthesis. Both PrivBayes and PGM
follow this framework. We propose new techniques for all four of these steps in PrivSyn.

Differentially Private Marginal Selection. In the phase of obtaining marginals, there are two
sources of errors. One is information loss when some marginals are missed; the other is noise error
incurred by DP. To balance between the two kinds of information loss, we propose an effective
algorithm DenseMarg that is able to choose marginals that capture more useful correlations even
under very low privacy budget. Due to space limitation, we defer the details of our marginal selection
method, noise addition method and post-processing method to Appendix B.

3.2 SYNTHETIC DATA GENERATION

Given a set of noisy marginals, the data synthesis step generates a new dataset Ds so that its distri-
bution is consistent with the noisy marginals. Existing methods (Zhang et al., 2017; Mckenna et al.,
2019) put these marginals into a graphical model, and use the sampling algorithm to generate the
synthetic dataset. As each record is sampled using the marginals, the synthetic dataset distribution
is naturally consistent with the distribution. The drawback of this approach is that when the graph
is dense, existing algorithms do not work. To overcome this issue, we use an alternative approach.
Instead of sampling the dataset using the marginals, we initialize a random dataset and update its
records to make it consistent with the marginals.

Strawman Method: Min-Cost Flow (MCF). Given the randomly initiated dataset Ds, for each
noisy marginal, we update Ds to make it consistent with the marginal. The update procedure can be
modeled as a graph flow problem. In particular, given a marginal, a bipartite graph is constructed.
Its left side represents the current distribution on Ds; and the right side is for the target distribution
specified by the marginal. Each node corresponds to one cell in the marginal and is associated with
a number. In order to change Ds to make it consistent with the marginal, we change records in Ds.

Income Gender Age

v1 high male teenager
v2 high male adult
v3 high male adult
v4 high male teenager
v5 high female elderly

(a) Dataset before updating.

v S{I,G}(v) T{I,G}(v)

〈low, male,∗〉 0.0 0.0
〈low, female,∗〉 0.0 0.0
〈high, male,∗〉 0.8 0.2
〈high, female,∗〉 0.2 0.8

(b) Marginal table for {Income, Gender}.

Income Gender Age

v1 high male teenager
v2 high male adult
v3 high female elderly
v4 high female teenager
v5 high female elderly

(c) Dataset after updating.

Figure 1: Example of the synthesized dataset before and after updating procedure.

Gradually Update Method (GUM). We empirically find that the convergence performance of
MCF is not good. We believe that this is because MCF always changes Ds to make it completely
consistent with the current marginal in each step. Doing this reduces the error of the target marginal
close to zero, but increases the errors for other marginals to a large value.

To handle this issue, we borrow the idea of multiplicative update (Arora et al., 2012) and propose a
new approach that Gradually Update Ds based on the Marginals; and we call it GUM. GUM also
adopts the flow graph introduced by MCF, but differs from MCF in two ways: First, GUM does
not make Ds fully consistent with the given marginal in each step. Instead, it changes Ds in a
multiplicative way, so that if the original frequency in a cell is large, then the change to it will be
more. In particular, we set a parameter α, so that for cells that have values are lower than expected
(according to the target marginal), we add at most α times of records, i.e., min {nt − ns, αns},
where nt is the number in the marginal and ns is the number from Ds. On the other hand, for cells
with values higher than expected, we will reduce min {ns − nt, βns} records that satisfy it. As the
total number of record is fixed, given α, β can be calculated.
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Figure 1 gives a running example. Before updating, we have 4 out of 5 records have the combination
〈high,male〉, and 1 record has 〈high, female〉. To get closer to the target marginal of 0.2 and 0.8
for these two cells, we want to change 2 of the 〈high,male〉 records to be 〈high, female〉. In this
example, we have α = 2.0, β = 0.5 and do not completely match the target marginal of 0.2 and 0.8.
To this end, one approach is to simply change the Gender attribute value from male to female in these
two records as in MCF. We call this a Replace operation. Replacing will affect the joint distribution
of other marginals, such as {Gender,Age}. An alternative is to discard an existing 〈high,male〉
record, and Duplicate an existing 〈high, female〉 record (such as v5 in the example). Duplicating
an existing record help preserve joint distributions between the changed attributes and attributes
not in the marginal. However, Duplication will not introduce new records that can better reflect
the overall joint distribution. In particular, if there is no record that currently has the combination
〈high, female, elderly〉, duplication cannot be used. Therefore, we need to use a combination of
Replacement and Duplication (which is the case in Figure 1). Furthermore, once the synthesized
dataset is getting close to the distribution, we would prefer Duplication to Replacement, since at that
time there should be enough records to reflect the distribution and Replacement disrupts the joint
distribution between attributes in a marginal and those not in it. To further improve the convergence
performance, we propose several tricks in Appendix C.

4 EVALUATION

Datasets. We use the Colorado (NIST) dataset in our experiment, which is the census dataset of
Colorado State in 1940. This dataset is used in the final round of the NIST challenge. It contains
662, 000 records and 97 attributes with a domain of 5 · 10162.

Tasks and Metrics. We evaluate the statistical performance of the synthesized datasets on three
data analysis tasks. For each data analysis task, we adopt its commonly used metric to measure the
performance. (1) Marginal release: We compute all the 2-way marginals and use the average `1
error to measure the performance. (2) Range query: We randomly sample 1000 range queries, each
contains 3 attributes. We use the average `1 error to measure the performance. (3) Classification:
We use the synthesized dataset to train an SVM classification model, and use misclassification rate
to measure the performance.

Competitors. We compare PrivSyn with PrivBayes, PGM, and a game-based method DualQuery.
For the classification task, we have another two competitors, i.e., Majority (blindly predicts the label
by the majority label) and NonPriv (without enforcing differential privacy). Note that we have two
versions of synthesis methods for PrivSyn, i.e., MCF and GUM.
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Figure 2: End-to-end Comparison of different dataset generation methods.

Experimental Results. Figure 2 illustrates the performance of different methods. We do not show
the classification performance of DualQuery since the misclassification rate is larger than Majority
and the variance is large. The experimental results show that PrivSyn consistently outperforms
other methods for all data analysis tasks. For the pair-wise marginal task, the performance of PGM
and PrivBayes is quite close to PrivSyn, meaning these two methods can effectively capture low-
dimensional correlation. However, the performance of range query task and classification task are
much worse than PrivSyn, since range query and classification tasks require higher dimensional cor-
relation. PrivSyn can effectively preserve both low-dimensional and high-dimensional correlation.
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A COMPOSITION VIA ZERO CONCENTRATED DP

For a sequential of k mechanisms A1, . . . ,Ak satisfying (εi, δi)-DP for i = 1, . . . , k respectively,
the basic composition result (Dwork & Roth, 2014) shows that the privacy composes linearly, i.e.,
the sequential composition satisfies (

∑k
i εi,

∑k
i δi)-DP. When εi = ε and δi = δ, the advanced

composition bound from (Dwork et al., 2010) states that the composition satisfies (ε
√

2k log(1/δ′)+
kε(eε − 1), kδ + δ′)-DP.

To enable more complex algorithms and data analysis task via the composition of multiple differen-
tially private building blocks, zero Concentrated Differential Privacy (zCDP for short) offers elegant
composition properties. The general idea is to connect (ε, δ)-DP to Rényi divergence, and use the
useful property of Rényi divergence to achieve tighter composition property. In another word, for
fixed privacy budget ε and δ, zCDP can provide smaller standard deviation for each task compared
to other composition techniques. Formally, zCDP is defined as follows:
Definition 2 (Zero-Concentrated Differential Privacy (zCDP) (Bun & Steinke, 2016)). A random-
ized mechanism A is ρ-zero concentrated differentially private (i.e., ρ-zCDP) if for any two neigh-
boring databases D and D′ and all α ∈ (1,∞),

Dα(A(D)||A(D′))
∆
=

1

α− 1
log
(
E
[
e(α−1)L(o)

] )
≤ ρα

Where Dα(A(D)||A(D′)) is called α-Rényi divergence between the distributions of A(D) and
A(D′). Lo is the privacy loss random variable with probability density function f(x) =

log Pr[A(D)=x]
Pr[A(D′)=x] .

zCDP has a simple linear composition property (Bun & Steinke, 2016):
Theorem 1. Two randomized mechanisms A1 and A2 satisfy ρ1-zCDP and ρ2-zCDP respectively,
their sequential composition A = (A1,A2) satisfies (ρ1 + ρ2)-zCDP.

The following two theorems restate the results from (Bun & Steinke, 2016), which are useful for
composing Gaussian mechanisms in differential privacy.

Theorem 2. If A provides ρ-zCDP, then A is (ρ + 2
√
ρ log(1/δ), δ)-differentially private for any

δ > 0.
Theorem 3. The Gaussian mechanism which answers f(D) with noise N (0,∆2

fσ
2I) satisfies

( 1
2σ2 )-zCDP.

Given ε and δ, we can calculate the amount of noise for each task using Theorem 1 to Theorem 3.
In particular, we first use Theorem 2 to compute the total ρ allowed. Then we use Theorem 1 to
allocate ρi for each task i. Finally, we use Theorem 3 to calculate σ for each task. Compared with
(ε, δ)-DP, zCDP provides a tighter bound on the cumulative privacy loss under composition, making
it more suitable for algorithms consist of a large number of tasks.

B DIFFERENTIALLY PRIVATE MARGINAL SELECTION

B.1 DEPENDENCY MEASUREMENT

To select marginals that capture most of the correlation information, one needs a metric to measure
the correlation level. In Bayesian network, mutual information is used to capture pair-wise correla-
tion. As the sensitivity for mutual information is high, the authors of (Zhang et al., 2017) proposed
a function that can approximate the mutual information. However, the function is slow (quadratic to
the number of users in the dataset) to compute.

To compute correlation in a simple and efficient way, in this subsection, we propose a metric which
we call Independent Difference (InDif for short). For any two attributes a, b, InDif calculates the `1
distance between the 2-way marginal Ma,b and 2-way marginal generated assuming independence
Ma ×Mb, where a marginal MA specified by a set of attributes A is a frequency distribution table,
showing the frequency with each possible combination of values for the attributes, and× denote the
outer product, i.e., InDifa,b = |Ma,b −Ma ×Mb|1.
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v Mgender(v)

〈male,∗〉 0.40
〈female,∗〉 0.60

(a) 1-way marginal for gender.

v Mage(v)

〈∗,teenager〉 0.20
〈∗,adult 〉 0.30
〈∗,elderly〉 0.50

(b) 1-way marginal for age.

v

〈male, teenager〉 0.08
〈male, adult〉 0.12
〈male, elderly〉 0.20
〈female, teenager〉 0.12
〈female, adult〉 0.18
〈female, elderly〉 0.30

(c) 2-way marginal assume inde-
pent

v

〈male, teenager〉 0.10
〈male, adult〉 0.10
〈male, elderly〉 0.20
〈female, teenager〉 0.10
〈female, adult〉 0.20
〈female, elderly〉 0.30

(d) Actual 2-way marginal

Figure 3: Example of the calculation of InDif.

Figure 3 gives an example to illustrate the calculation of InDif. The 2-way marginal in Figure 3c
is directly calculated by the 1-way marginal of gender and age, without analyzing the dataset; and
Figure 3d gives the actual 2-way marginal. In this example, InDif = 0.08 ·n, where n is the number
of records. The advantage of using InDif is that it is easy to compute, and it has low sensitivity in
terms of its range, [0, 2n]:

Lemma 4. The sensitivity of InDif metric is 4: ∆InDif = 4.

Proof. Assume D contains n records and consider the two attributes a and b. Denote the number of
users for histogram on attribute a as a1, a2, . . ., and b1, b2, . . . for b. For the two-way marginal on
a, b, denote the number of users for it as α11, α12, · · · .
The metric InDifab is

InDifab =
∑
ij

∣∣∣∣aibjn − αij
∣∣∣∣

If we add one user (wlog, whose values for a and b are x and y),

InDif′ab =
∑

i6=x,j 6=y

∣∣∣∣ aibjn+ 1
− αij

∣∣∣∣
+
∑
i6=x

∣∣∣∣ai(by + 1)

n+ 1
− αiy

∣∣∣∣
+
∑
j 6=y

∣∣∣∣ (ax + 1)bj
n+ 1

− αxj
∣∣∣∣

+

∣∣∣∣ (ax + 1)(by + 1)

n+ 1
− (αxy + 1)

∣∣∣∣
Since |s| − |t| ≤ |s− t|, the sensitivity is given by
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∆InDif = |InDifab − InDif′ab|

≤
∑

i 6=x,j 6=y

∣∣∣∣ aibj
n(n+ 1)

∣∣∣∣+
∑
i 6=x

∣∣∣∣ aiby
n(n+ 1)

− ai
n+ 1

∣∣∣∣
+
∑
j 6=y

∣∣∣∣ axbj
n(n+ 1)

− bj
n+ 1

∣∣∣∣+

∣∣∣∣ (n+ 1)axby − n(ax + 1)(by + 1) + n(n+ 1)

n(n+ 1)

∣∣∣∣
=

∑
i6=x,j 6=y aibj −

∑
i 6=x(aiby − nai)−

∑
j 6=y(axbj − nbj)

n(n+ 1)

+
(n+ 1)axby − n(ax + 1)(by + 1) + n(n+ 1)

n(n+ 1)
(1)

=
(n− ax)(n− by)− (n− ax)(by − n)− (ax − n)(n− by)

n(n+ 1)

+
(n+ 1)axby − n(ax + 1)(by + 1) + n(n+ 1)

n(n+ 1)
(2)

=
4
(
n2 − (ax + by)n+ axby

)
n(n+ 1)

=
4(n− ax)(n− by)

n(n+ 1)
≤ 4

In the above derivation, Equation 1 is due to aibj
n(n+1) ≥ 0, aiby

n(n+1)−
ai
n+1 ≤ 0, axbj

n(n+1)−
bj
n+1 ≤ 0 and

(n+1)axby−n(ax+1)(by+1)+n(n+1)
n(n+1) =

(n−ax)(n−by)
n(n+1) ≥ 0. Equation 2 is due to

∑
i6=x ai = n − ax,∑

j 6=y bj = n− by and
∑
i 6=x,j 6=y aibj = (n− ax)(n− by).

Given d attributes, we use the Gaussian mechanism to privately obtain all InDif scores. To evaluate
the impact of noise, one should consider both sensitivity and range of the metrics. InDif typically has
smaller noise-range ratio than entropy-based metrics. More specifically, given the overall privacy
parameters (ε, δ), we first compute the parameter ρ using Theorem 2. We then use ρ′ < ρ for
publishing all the InDif scores for allm =

(
d
2

)
pairs of attributes. In particular, with the composition

theory of zCDP, we can show that publishing all InDif scores with Gaussian noise N (0, 8m/ρ′I)
satisfies ρ′-zCDP.
Theorem 5. Given d attributes, publishing all m = d(d − 1)/2 InDif scores with Gaussian noise
N (0, 8m/ρ′I) satisfies ρ′-zCDP.

Proof. The proof is trivial given Lemma 4, Theorem 1 and Theorem 3: Because the sensitivity of
InDif is 4, publishing it with N (0, 8m/ρ′I) satisfies ρ′/m-zCDP. For m InDif scores, by composi-
tion, publishing all of them satisfies ρ′-zCDP.

B.2 MARGINAL SELECTION

Given the dependency scores InDif, the next step is to choose the pairs with high correlation, and
use the Gaussian mechanism to publish marginals on those pairs. In this process, there are two error
sources. One is the noise error introduced by the Gaussian noise; the other is the dependency error
when some of the marginals are not selected. If we choose to publish all 2-way marginals, the noise
error will be high and there is no dependency error; when we skip some marginals, the error for
those marginals will be dominated by the dependency error.

Problem Formulation. Given m pairs of attributes, each pair i is associated with an indicator
variable xi that equals 1 if pair i is selected, and 0 otherwise. Define ψi as the noise error introduced
by the Gaussian noise and φi as its dependency error. The marginal selection problem is formulated
as the following optimization problem:

minimize
m∑
i=1

[ψixi + φi(1− xi)]

subject to xi ∈ {0, 1}

8
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Notice that the dependency error φi has positive correlation with InDifi, i.e., larger InDifi incurs
larger φi. Thus, we approximate φi as InDifi + N (0,m2ρ′2I), and it is fixed in the optimization
problem.

The noise error ψi is dependent on the privacy budget ρi allocated to the pair i. In particular, we first
show that given the true marginal Mi, we add Gaussian noise with scale 1/ρi to achieve ρi-zCDP.

Theorem 6. (1) The marginal M has sensitivity ∆M = 1; (2) Publishing marginal M with noise
N (0, 1/2ρI) satisfies ρ-zCDP.

Proof. We first prove the marginal function has sensitivity 1. A marginal MA specified by a set
of attributes A is a frequency distribution table, showing the number of record with each possible
combination of values for the attributes. For two marginals MA and M′A, where M′A is obtained by
adding or removing one user to MA. In general, for anyA, it is obviously that ∆M = |M−M′|2 = 1.

Given this fact, by Theorem 3, it is trivial that adding N (0, 1/2ρI) to a marginal satisfies ρ-zCDP.

To make ψi and φi comparable, we use the expected `1 error of the Gaussian noise on marginal i.
That is, if the marginal size is ci, after adding Gaussian noise with scale σi, we expect to see the

`1 error of ci
√

2
πσi. Thus, with privacy budget ρi, ψi = ci

√
1
πρi

. The optimization problem is
transformed to:

minimize
m∑
i=1

[
ci

√
1

πρi
xi + φi(1− xi)

]
subject to xi ∈ {0, 1}∑

xiρi = ρ

Optimal Privacy Budget Allocation. We first assume the pairs are selected (i.e., variables of xi
are determined), and we want to allocate different privacy budget to different marginals to minimize
the overall noise error. In this case, the optimization problem can be rewritten as:

minimize
∑
i:xi=1

ci

√
1

ρi

subject to
∑
i:xi=1

ρi = ρ

For this problem, we can construct the Lagrangian function L =
∑
i
ci√
ρi

+ µ · (
∑
i ρi − ρ). By

taking partial derivative of L for each of ρi, we have ρi =
(

2µ
ci

)−2/3

. The value of µ can be solved

by equation
∑
i ρi = ρ. As a result, µ = 1

2 ·
(

ρ∑
i c

2/3
i

)−3/2

, and we have

ρi =
c
2/3
i∑
j c

2/3
j

· ρ (3)

That is, allocating privacy budget proportional to the 2
3 power of the number of cells achieves the

minimum overall noise error.

A Greedy Algorithm to Select Pairs. We propose a greedy algorithm to select pairs of attributes, as
shown in Algorithm 1. Given the InDif scores of all pairs of attributes 〈φi〉, size of all marginals 〈ci〉,
and the total privacy budget ρ, the goal is to determine xi for each i ∈ {1, . . . ,m}, or equivalently,
output a set of pairs X = {i : xi = 1} that minimize the overall error. We handle this problem
by iteratively including marginals that give the maximal utility improvement. In particular, in each
iteration t, we select one marginal that brings the maximum improvement to the overall error. More
specifically, we consider each marginal i that is not yet included in X (i.e., i ∈ X̄ , where X̄ =
{1, . . . ,m} \X): In Line 4, we allocate the optimal privacy budget ρi according to Equation 3. We
then calculate the error in Line 5, and select one with maximum utility improvement (in Line 6).
After the marginal is selected, we then include it in X . The algorithm terminates when the overall
error no longer improves. The algorithm is guaranteed to terminate since the noise error would

9
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gradually increase when more marginals are selected. When the noise error is larger than any of the
remaining dependency error, the algorithm terminates.

Algorithm 1: Marginal Selection Algorithm
Input: Number of pairs m, privacy budget ρ, dependency error 〈φi〉, marginal size 〈ci〉;
Output: Selected marginal set X;

1 X ← ∅; t← 0; E0 ←
∑
i∈X̄ φi;

2 while True do
3 foreach marginal i ∈ X̄ do
4 Allocate ρ to marginals j ∈ X ∪ {i};
5 Et(i) =

∑
j∈X∪{i} cj

√
1
πρj

+
∑
j∈X̄\{i} φj ;

6 `← arg mini∈X̄ Et(i);
7 Et ← Et(`);
8 if Et ≥ Et−1 then
9 Break

10 X ← X ∪ {l};
11 t← t+ 1;

Combine Marginals. Till now, we assume two-way marginals are used. When some marginals
contain only a small number of possibilities (e.g., when some attributes are binary), extending to
multi-way marginals can help capture more information. In particular, given X , which contains
indices of the marginals selected from Algorithm 1, we first convert each index to its corresponding
pair of attributes; we then build a graph G where each node represents an attribute and each edge
corresponds to a pair. We then find all the cliques of size greater than 2 in the graph. If a clique is
not very big (smaller than a threshold γ = 5000), and does not overlap much with existing selected
attributes (with more than 2 attributes in common), we merge the 2-way marginals contained in the
clique into a multi-way marginal.

Algorithm 2 gives the pseudocode of our proposed marginal combining technique. We first identify
all possible cliques in graph G and sort them in decending order by their attribute size. Then, we
examine each clique c to determine whether to combine it. If the clique has a small domain size
(smaller than a threshold γ) and does not contain more than 2 attributes that is already in the selected
attributes set S, we include this clique and remove all 2-way marginals within it.

B.3 POST PROCESSING

The purpose of post processing is to ensure the noisy marginals are consistent. By handling such
inconsistencies, we avoid impossible cases and ensure there exists a solution (i.e., a synthetic dataset)
that satisfies all the noisy marginals. For the case when multiple marginals contain the same set of
attributes, and their estimations on the shared attributes do not agree, we use the weighted average
method (Ding et al., 2011; Qardaji et al., 2014). Note that (Ding et al., 2011; Qardaji et al., 2014)
both assume the privacy budget is evenly distributed. We extend it to the uneven case.

Algorithm 2: Marginal Combine Algorithm
Input: Selected pairwise marginals X , threshold γ
Output: Combined marginals X

1 Convert X to a set of pairs of attributes;
2 Construct graph G from the pairs;
3 S ← ∅; X ← ∅
4 foreach clique size s from m to 3 do
5 Cs ← cliques of size s in G
6 foreach clique c ∈ Cs do
7 if |c ∩ S| ≤ 2 and domain size of c ≤ γ then
8 Append c to X
9 Append the attributes of c to S

10
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Consistency under Uneven Privacy Budget Allocation. When different marginals have some
attributes in common, those attributes are actually estimated multiple times. Utility will increase if
these estimates are utilized together. For example, when some marginals are estimated twice, the
mean of the estimates is actually more accurate than each of them. More formally, assume a set of
attributes A is shared by s marginals M1,M2, . . . ,Ms, where A = M1 ∩ . . . ∩Ms. We can obtain s
estimates of A by summing from cells in each of the marginals.

In (Qardaji et al., 2014), the authors proposed an optimal method to determine the distribution of the
weights when privacy budget is evenly distributed among marginals. The main idea is to take the
weighted average of estimates from all marginals in order to minimize the variance of marginals on
A. We adopt the weighted average technique, and extend it to hand the case where privacy budget
is unevenly allocated. In particular, we allocate a weight wi for each marginal i. The variance of
the weighted average can be represented by

∑
i w

2
i ·

gi
ρi

, where ρi is the privacy budget and gi is the
number of cells that contribute to one cell of the marginal on A. Here the Gaussian variance is 1/ρi.
By summing up gi cells, and multiplying the result by wi, we have the overall variance w2

i
gi
ρi

. The
weights should add up to 1. More formally, we have the following optimization problem:

minimize
∑
i

w2
i ·

gi
ρi

subject to
∑
i

wi = 1

By constructing the Lagrangian function and following the same derivative procedure as we did for
obtaining optimal ρi (Equation (3)), we have wi = ρi/gi∑

i ρi/gi
is the optimal strategy.

Overall Consistency. In addition to the inconsistency among marginals, some noisy marginals may
contain invalid distributions (i.e., some probability estimations are negative, and the sum does not
equal to 1). Given the invalid distribution, it is known that projecting it to a valid one with minimal
`2 distance achieves the maximal likelihood estimation. This is discovered in different settings (e.g.,
(Lee et al., 2015; Wang et al., 2020; Bassily, 2019)); and there exists efficient algorithm for this
projection.

The challenge emerges when we need to handle the two inconsistencies simultaneously, one oper-
ation invalidate the consistency established in another one. We iterate the two operations multiple
times to ensure both consistency constraints are satisfied.

C IMPROVING THE CONVERGENCE

Given the general data synthesize method, we have several optimizations to improve its utility and
performance. First, to bootstrap the synthesizing procedure, we require each attribute of Ds follows
the 1-way noisy marginals when we initialize a random dataset Ds.

Gradually Decreasing α. The update rate α should be smaller with the iterations to make the result
converge. From the machine learning perspective, gradually decreasing α can effectively improve
the convergence performance. There are some common practices (dec) of setting α.

• Step decay: α = α0 · kb
t
s c, where α0 is the initial value, t is the iteration number, k is the decay

rate, and s is the step size (decrease α every s iterations). The main idea is to reduce α by some
factor every few iterations.

• Exponential decay: α = α0 · e−kt, where k is a hyperparameter. This exponentially decrease α
in each iteration.

• Linear decay: α = α0

1+kt .

• Square root decay: α = α0√
1+kt

.

We empirically find that step decay is preferable in all settings. The step decay algorithm is also
widely used to update the step size in the training of deep neural networks (Krizhevsky et al., 2012).
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Attribute Appending. The selected marginals X output by Algorithm 2 can be represented by a
graph G. We notice that some nodes have degree 1, which means the corresponding attributes are
included in exactly one marginal. For these attributes, it is not necessary to involve them in the
updating procedure. Instead, we could append them to the synthetic dataset Ds after other attributes
are synthesized. In particular, we identify nodes from G with degree 1. We then remove marginals
associated with these nodes from X . The rest of the noisy marginals are feed into GUM to generate
the synthetic data but with some attributes missing. For each of these missed attributes, we sample
a smaller dataset Ds’ with only one attribute, and we concatenate Ds’ to Ds using the marginal
associated with this attribute if there is such a marginal; otherwise, we can just shuffle Ds’ and
concatenate it to Ds. Note that this is a one time operation after GUM is done. No synthesizing
operation is needed after this step.

Separate and Join. We observe that, when the privacy budget is low, the number of selected
marginals is relatively small, and the dependency graph is in the form of several disjoint subgraphs.
In this case, we can apply GUM to each subgraph and then join the corresponding attributes. The
benefit of Separate and Join technique is that, the convergence performance of marginals in one
subgraph would not be affected by marginals in other subgraph, which would improve the overall
convergence performance.

Filter and Combine Low-count Values. If some attributes have many possible values while most
of them have low counts or do not appear in the dataset. Directly using these attributes to obtain
pairwise marginals may introduce too much noise. To address this issue, we propose to filter and
combine the low-count values. The idea is to spend a portion of privacy budget to obtain the noisy
one-way marginals. After that, we keep the values that have count above a threshold θ. For the
values that are below θ, we add them up, if the total is below θ, we assign 0 to all these values.
If their total is above θ, then we create a new value to represent all values that have low counts.
After synthesizing the dataset, this new value is replaced by the values it represents using the noisy
one-way marginal. The threshold is set as θ = 3σ, where σ is the standard deviation for Gaussian
noises added to the one-way marginals.
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