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ABSTRACT

Business intelligence and AI services often involve the collection of copious
amounts of multi-dimensional personal data. Local differential privacy (LDP)
is currently considered as a state-of-the-art solution for privacy-preserving data
collection. However, existing LDP-based data collection algorithms are not appli-
cable to high-dimensional data; not only because of the increase in computation
and communication cost, but also poor data utility.
In this paper, we aim at using the idea of data synthesis to address the curse-of-
dimensionality problem in LDP-based data collection algorithms. We propose
DP-FED-WAE, an efficient privacy-preserving framework for collecting high-
dimensional categorical data. With the combination of a generative autoencoder,
federated learning, and differential privacy, our framework is capable to privately
learn the statistical distributions of clients’ local data and generate high-utility
synthetic data on the server side without revealing clients’ private information.
By evaluating the framework on real-world datasets with 69∼124 attributes, we
show that our framework outperforms the LDP-based baseline algorithms in cap-
turing complex statistical properties of real data and the generated synthetic data
achieve less than 3% accuracy loss in AI training tasks. Extensive experimental
results demonstrate the capability and efficiency of our framework in synthesizing
high-dimensional data while striking a satisfactory utility-privacy balance.

1 INTRODUCTION

With the rapid development of network and computer technologies, large and diverse quantities
of multi-dimensional person-specific data are frequently generated on local devices such as smart-
phones and IoT sensors. These data usually contain rich statistical information describing user pro-
files, which is valuable for data analysts to explore the hidden correlations and patterns of data from
different perspectives. In principle, the more dimensions the data consist of, the more information
can be used for describing the user groups and building effective AI services. However, since the
data are generated based on individuals’ ongoing behaviors, the direct collection can reveal sensitive
information about them and lead to severe privacy problems (e.g., Berman et al. (2018)).

Local differential privacy (LDP, Kasiviswanathan et al. (2011)), as a state-of-the-art data anonymiza-
tion mechanism, has been recently deployed for privacy-preserving data collection (e.g., Erlingsson
et al. (2014); Bun et al. (2018); Wang et al. (2018)). However, prior research on LDP-based data
collection mainly focuses on one-dimensional statistical information. Since the attributes in multi-
dimensional data are usually correlated, the server is particularly interested in learning the correla-
tions and joint distributions among attributes. Nevertheless, directly applying these LDP algorithms
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for estimating the joint distributions of multi-dimensional data faces the curse-of-dimensionality
problem: the domain size increases exponentially with data dimensionality, which will lead to ex-
tremely large communication cost and storage complexity, as well as a significant degradation in
data utility. To reduce the large communication overhead, later works in Ren et al. (2018) and Wang
et al. (2019b) propose to separately collect data of each dimension under LDP and then use the ran-
domized data to estimate the m-way joint distributions on the server side. However, the algorithms
still suffer from high computational complexity and low data utility whenm is large. Based on these
facts, solutions for privacy-preserving high-dimensional data collection are still greatly needed.

Recently, data synthesis has been considered as a promising approach for addressing data privacy
issues in business intelligence & AI services. In this paper, we follow the idea of data synthesis
and propose DP-FED-WAE, an efficient and privacy-preserving framework for high-dimensional
categorical data collection. Different from prior works on differentially-private synthetic data gen-
eration algorithms (Park et al. (2018); Torkzadehmahani et al. (2019)), which mainly focus on the
centralized setting where the real data are already collected by the server, our framework conducts
the data synthesis without collecting real local data. The main idea is to train a (generative) Wasser-
stein Autoencoder (Tolstikhin et al. (2018)) (WAE) under the federated learning (FL) setting to
learn the distributions of the high-dimensional local data and then to generate high-quality synthetic
data on the cloud server. Moreover, we propose a novel local randomization algorithm SIGNDS,
which is applied on a client’s local updates to prevent potential privacy leakages in FL and provide
comprehensive privacy protection to our framework. By evaluating the framework on a number of
real-world datasets containing 69 ∼ 124 classification attributes, we show that the synthetic data
generated by our framework always preserve much closer joint distributions and correlations to real
data in comparison to LDP-based baseline algorithms. Also, with a local privacy guarantee ε = 8
and using the synthetic data generated by our framework for training machine learning models, we
achieve less than 3% and at best even less than 1% accuracy loss, in contrast to 10% ∼ 30% us-
ing the data generated by the baseline algorithms. Extensive evaluation experiments demonstrate
that our framework has outperforming capability and efficiency in collecting high-dimensional data
while striking a satisfactory utility-privacy balance.

2 DP-FED-WAE FRAMEWORK

In this paper, we consider the scenario that a central server aims to estimate the correlations and joint
distributions of high-dimensional personal data held by a number of local clients. To protect local
privacy for each client, the data collection should be performed in a private manner, which requires
the server not to have access to raw local data but only anonymized versions of data or their feature
representations. The collected data and representations can be used to generate similar synthetic
data on the server side for data analysis or designing new AI services.

Based on the limitations of existing LDP-based data collection algorithms, we propose DP-FED-
WAE, an efficient privacy-preserving framework for collecting high-dimensional categorical data.
The overall workflow is presented in Figure 1. Following the idea of data synthesis techniques, the
framework utilizes generative autoencoders to learn the statistical distributions and correlations of
clients’ local data and then to generate high-utility synthetic data on the server side. Since we focus
on the scenario where the real data are distributed on local devices and are inaccessible to the server,
we propose to train the generative autoencoder under the FL setting, which only exchanges model
parameters instead of raw local data during the training process. Furthermore, we incorporate DP
into the training process to provide a comprehensive privacy protection for the framework.

In the following, we will briefly introduce the main steps of our framework.

Data Pre-processing and Design of the Generative Model Since the original data are categorical
and cannot be directly used for training generative models, we firstly use one-hot encoding to convert
the categorical records into binary vectors as the training data. Then, we design our generative model
based on the dimension of training data. In this paper, we choose the Wasserstein Autoencoder
(WAE) in our framework. The WAE model preserves the encoder-decoder architecture. The goal of
training is to find an optimal set of parameters, which minimizes the distance between the inputs and
reconstructed outputs while restricting the latent distribution to follow a certain prior distribution pz .
A detailed description of the WAE model is presented in Appendix B.1.
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Figure 1: Overview of the DP-FED-WAE framework. The generative Wasserstein Autoencoder
is trained under the federated setting, which learns the distributions of real local data. An LDP
algorithm SIGNDS is applied to the local updates to provide strict local privacy guarantees. After
the model is trained, the decoder part is used to generate high-utility synthetic data. The generated
data will be used for data mining and building AI services.

Training the Generative Model Since the real data are distributed on local devices and cannot
be accessed by the server, we adopt the FL mechanism to train the WAE model. Moreover, we
propose a novel local randomization algorithm SIGNDS, which is applied on clients’ local updates
before uploading them to the server. For each local update vector, the algorithm privately selects
one of the top-k dimensions by the update values and returns the selected dimension index to the
server. The server then constructs sparse local updates based on these returned indices and uses their
aggregation to update the global model. We prove that the randomization algorithm follows a strict ε-
LDP definition. Details of the SIGNDS algorithm as well as the model training process are described
in Appendix B.2. In comparison to previous DP-FL frameworks that apply DP perturbation on the
server side (e.g., Augenstein et al. (2020)), our framework ensures that the server cannot gain any
information of the real local updates, which efficiently prevents local privacy leakages in FL and
provides a strong local privacy guarantee to each client’s local dataset.

Synthetic Data Generation and Post-processing Once the WAE model has been trained, the
server can randomly sample latent features from pz and feed them into the decoder to generate syn-
thetic data. The decoder’s output has the same dimension as the encoded input with each dimension
value between 0 and 1. Finally, we convert the numerical outputs back to categorical form. Given
an output vector, we split it into pieces of sub-vectors, each representing one categorical attribute.
For each sub-vector, we choose the entry with the maximum value as the attribute value and finally
concatenate all the attribute values into one vector to construct the final synthetic dataset.

3 EXPERIMENTS AND RESULTS

In the experiments, we use LOPUB (Ren et al. (2018)) and LOCOP (Wang et al. (2019b)) as our
baseline algorithms. Both algorithms directly apply LDP on the local data. The randomized data
are aggregated on the server side for constructing the synthetic dataset. Details of the baseline al-
gorithms can be found in Appendix C.1. We use four real-world datasets with 69 ∼ 124 attributes
to evaluate the performance of our framework. Detailed descriptions of the datasets, WAE model
structures and parameter configurations are reported in Appendix C.2 and Appendix C.3. We, re-
spectively, evaluate the utility of the synthetic data in terms of statistical distributions and AI training
performance and briefly present some of the results in the following. Extended experimental results
can be found in Appendix D.

Comparison of Joint Distributions For the analysis of joint distributions, we use the Average
Variant Distance (AVD) to quantify the distribution difference between the real data and synthetic
data, as suggested in Ren et al. (2018), which is defined as AVD = 1

2

∑
ω∈Ω |Preal(ω)−Psyn(ω)|.

Preal(ω) and Psyn(ω) are m-way joint distributions of real data and synthetic data. Clearly, the
smaller AVD, the better the utility of the synthetic data. In Figure 2, we present the results of m-
way AVD (m ∈ {2, 3, 4, 5, 6}) between the real data and the synthetic data under ε = 4. It can be
seen that our framework constantly outperforms the baseline algorithms for all the datasets. More
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Figure 2: Average total variation distance (AVD)
of m-way joint distributions (m{2, 3, 4, 5, 6})
between the real data and synthetic data gener-
ated by our framework (WAE) as well as by the
baseline algorithms (LoPub, LoCop) with ε = 4.

Figure 3: Classification accuracy of neural net-
work (NN) trained with real data (Real Data)
and synthetic data generated by our framework
(WAE) as well as by the baseline algorithms
(LoPub, LoCop) under different privacy levels.

specifically, the AVD of the baseline algorithms is close to our framework when m is small, yet gets
distinctively larger with an increase of m. This indicates that our framework has a better capability
in capturing information of high-dimensional joint distributions of real data.

AI Training Performance Next, we evaluate the utility of synthetic data in different AI training
tasks. More specifically, we train two classification modelsMreal,Msyn, respectively, with real data
and synthetic data, and test both models with an amount of held out real data. Then, we compare
Accreal and Accsyn, i.e., the test accuracy of Mreal, Msyn. In Figure 3, we present the evaluation
results on a 2-layer Neural Network (NN) under different privacy levels. It can be seen that the
Accsyn of the baselines shows in general a distinctive distance from Accreal on both evaluation
models and only has slight improvement with larger privacy budget ε. In comparison, the Accsyn
of our method consistently outperforms the baselines for both classification algorithms. With an
increase of ε, the Accsyn gradually gets close to Accreal. In particular, with ε = 8, the reduction of
Accsyn is less than 1% for the Census and Adult dataset and less than 3% for the other two datasets.
The results indicate that the synthetic data generated by our framework largely preserves the joint
distributions and correlations of real data, and can replace real data for AI training tasks.

Figure 4: Results of image data synthesis.

Extension to Other Data Types Besides collect-
ing high-dimensional categorical data, it is also pos-
sible to modify the current WAE model to sup-
port other data types, such as image data and text
data. Despite the variation of the model structures,
the main idea of training the model under privacy-
preserving federated learning and generating syn-
thetic data remains unchanged. In Figure 4, we
give the synthesis results evaluated on the MNIST
(LeCun et al. (2010)), Fashion-MNIST (Xiao et al.
(2017)), and CelebA (Liu et al. (2015)) datasets us-
ing WAE models with convolution layers. For each
dataset, we show the synthetic data produced by gen-
erated models trained under different privacy settings. Note that the synthetic data are randomly
generated and may look different from real data. It can be observed that our framework is capable
of synthesizing image datasets, and generated images have better quality with an increase of ε.

4 CONCLUSION

In this paper, we follow the idea of data synthesis and propose DP-FED-WAE, a privacy-preserving
framework for high-dimensional data collection. The framework utilizes a (generative) Wasser-
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stein autoencoder to learn the joint distributions and correlations of high-dimensional user data and
generate high-utility synthetic data on the server side. Moreover, we apply a differentially-private
federated learning mechanism for training the autoencoder, which not only avoids the collection of
real local data but also prevents privacy leakage of local data during the training process. Experi-
mental evaluation with real-world datasets shows that our framework significantly outperforms the
LDP-based baseline algorithms for high-dimensional data collection and synthesis. The synthetic
data generated by our framework preserves very similar statistical properties as real data and can
replace real data for data mining and model training tasks.
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Mingqing Chen, Rajiv Mathews, and Blaise Agüera y Arcas. Generative models for effective
ML on private, decentralized datasets. In Proceedings of the 8th International Conference on
Learning Representations (ICLR), virtual, 2020. OpenReview.net.

Raef Bassily, Kobbi Nissim, Uri Stemmer, and Abhradeep Guha Thakurta. Practical locally private
heavy hitters. In Advances in Neural Information Processing Systems, pp. 2288–2296, Long
Beach, CA, USA, 2017. Curran Associates Inc.

Gabrielle Berman, Sara de la Rosa, and Tanya Accone. Ethical considerations when using geospatial
technologies for evidence generation. Technical report, Innocenti Research Briefs, 2018.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1175–1191, New York, NY, USA, 2017. Association for Com-
puting Machinery.

Mark Bun, Jelani Nelson, and Uri Stemmer. Heavy hitters and the structure of local privacy. In
Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pp. 435–447, New York, NY, USA, 2018. Association for Computing Machinery.

Differential Privacy Team. Learning with privacy at scale. Apple Machine Learning Journal, 1(8),
2017.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Marco F. Duarte and Yu Hen Hu. Vehicle classification in distributed sensor networks. Journal of
Parallel and Distributed Computing, 64(7):826–838, 2004.

John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. Minimax optimal procedures for
locally private estimation. Journal of the American Statistical Association, 113(521):182–201,
2018.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3–4):211–407, 2014.

5

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Presented at ICLR 2021 Workshop Synthetic Data Generation: Quality, Privacy, Bias

Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil Vadhan. On the complex-
ity of differentially private data release: Efficient algorithms and hardness results. In Proceedings
of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 381–390, Bethesda, MD,
USA, 2009. ACM.
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A PRELIMINARIES

A.1 DIFFERENTIAL PRIVACY

Differential Privacy (DP) Dwork & Roth (2014) is a state-of-the-art data anonymization technique
which provides strong privacy guarantees for data analysis. The mathematical definition of DP is as
follows:
Definition 1 (Differential Privacy Dwork & Roth (2014)). A randomized mechanismM : D → O
satisfies ε-DP if for any two adjacent datasets D,D′ differing from one data sample and for any
measurable subset of outputs Y ⊆ O we have:

Pr [A(D) ∈ Y] ≤ eε · Pr [A(D′) ∈ Y] (1)

where ε describes the privacy loss.

The Definition 1 is usually applied in centralized settings where the data have already been collected
by a trusted server. However, in the local settings, we aim to ensure that each client’s local data will
not be accessed to the server. Thus, the definition of local differential privacy (LDP) has been
proposed Kasiviswanathan et al. (2011), which provides strong local privacy guarantees for each
client. The definition is as follows:
Definition 2 (Local Differential Privacy Kasiviswanathan et al. (2011)). A randomized mechanism
A : D → O satisfies ε-LDP if and only if for any two inputs x, x′ ∈ D and for any output y ∈ O we
have:

Pr [A(x) = y] ≤ eε · Pr [A(x′) = y] (2)
where ε describes the privacy loss.

In addition, LDP also holds two widely-used properties Dwork & Roth (2014), namely Sequential
Composition and Robustness to Post-Processing. The former property states that interactively ap-
plying the LDP mechanism on the same set of data yields an accumulated privacy cost. The latter
property states that any deterministic or randomized function defined over an LDP mechanism also
satisfies LDP.
Property 1 (Sequential Composition). Suppose n mechanisms {A1, · · · ,An} respectively satisfy
εi-LDP, and are sequentially computed on the same set of private data D, then a mechanism formed
by (A1, · · · ,An) satisfies (

∑n
i=1 εi)-LDP.

Property 2 (Robustness to Post-Processing). Let A be an ε-LDP mechanism and g be an arbitrary
mapping from the set of possible outputs to an arbitrary set. Then, g ◦ A is ε-LDP.

A.2 FEDERATED LEARNING

Federated learning McMahan et al. (2017) (FL) is a decentralized learning mechanism which
achieves computational efficiency and privacy benefits by distributing the training task to local de-
vices. At each global round, the server distributes the current global model to a number of local
clients. Each client locally updates the global model and returns the model update to the server.
On the server side, all the local updates are aggregated to update the global model, which will be
distributed in the next global round. Since only model parameters are exchanged during the training
process, FL allows the model trained without accessing raw local data.

Although FL provides enhanced privacy protection in comparison to centralized training, recent
contributions (e.g., Wang et al. (2019c); Nasr et al. (2019); Geiping et al. (2020)) point out that the
mechanism still has privacy risks. In the context of FL, privacy risks can be mainly divided into
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local privacy and global privacy aspects. Local privacy risks appear when the local updates reveal
insights about local data, while global privacy risks represent situations when the global model
memorizes local data. Motivated by this, privacy enhancing techniques such as secure multi-party
computation (MPC) Bonawitz et al. (2017) or differential privacy (DP) McMahan et al. (2018) are
incorporated into the FL mechanism, providing protections against global and local privacy risks.

A.3 AUTOENCODERS

An autoencoder Rumelhart et al. (1985) is a type of neural network that is used to learn efficient
and compressed feature representations in an unsupervised manner. The model is constituted of
two main parts: an encoder Qφ and a decoder Gθ. The encoder compresses the original high-
dimensional input x ∼ Px into the low-dimensional latent feature z = Qφ(x) and the decoder maps
z to the reconstructed output x′ = Gθ(z), which is of the same shape as x. The goal of training
is to find an optimized pair of encoder and decoder, which minimize the distance between x and
x′ = Gθ(Qφ(x)), namely

LAE = Ex∼Px [c(x,Gθ(Qφ(x))] (3)
where c(·, ·) is a metric for featuring the difference between two vectors. Commonly, we can use the
mean squared error (MSE) to measure the distance between numerical input vectors and the cross
entropy (CE) for binary input vectors.

B DETAILS OF THE PROPOSED FRAMEWORK

B.1 DESIGN OF THE GENERATIVE MODEL

We choose the Wasserstein Autoencoder (WAE) as the generative model in our framework, which
provides better data synthesis capability in comparison to the Variational Autoencoder (VAE)
Kingma & Welling (2014) and less training difficulty than the Generative Adversarial Network
(GAN) Goodfellow et al. (2014). As a variant from the family of autoencoders, WAE preserves
the encoder-decoder architecture. The encoder Qφ compresses the original high-dimensional input
x ∼ Px into the low-dimensional latent feature z = Qφ(x) and the decoder Gθ maps z to the re-
constructed output x′ = Gθ(z), which is of the same shape as x. The distance between the original
input and the reconstructed output can be presented as c(x,Gθ(Qφ(x)). In addition, a regularizer
term Dz(qz, pz) is applied to measure the distance between the latent space distribution qz and cer-
tain prior distribution pz . The final objective function of the WAE model can thus be formulated as
below:

LWAE = Ex∼Px [c(x,Gθ(Qφ(x))] + λ ·Dz(qz, pz) (4)
where λ is a hyperparameter for balancing the two terms. The goal of training is to find an optimal
set of parameters for the encoder and decoder, which minimizes the distance between the inputs and
outputs while restricting the latent distribution to follow the prior distribution.

We designed the WAE models with fully-connected hidden layers. We apply the relu activation
on the output of each hidden layer for better training performance. Moreover, since the inputs are
binary vectors, we use the sigmoid activation on the output layer, which restricts the output value
within [0,1]. We use the cross entropy (CE) to measure the reconstruction cost c(x,G(z)) and the
maximum mean discrepancy (MMD) to measure the latent space distance Dz(qz, pz), where pz
follows the standard Gaussian distribution.

B.2 TRAINING THE GENERATIVE MODEL

B.2.1 LOCAL RANDOMIZATION WITH SIGNDS

Previous LDP-FL frameworks (e.g., Dwork & Roth (2014); Duchi et al. (2018); Wang et al. (2019a))
evenly split the privacy budget across dimensions and apply the perturbation independently. How-
ever, the per-dimension privacy budget becomes extremely small for high-dimensional models,
which results in a significant increase of noise. A recent work Liu et al. (2020) proposed a two-
stage LDP-FL framework, which splits the privacy budget into a dimension selection (DS) stage and
a value perturbation (VP) stage. In the DS stage, the local update is sorted by absolute value and one
”important” dimension is privately selected from the top-k dimensions; in the VP stage, the value of
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Algorithm 1: SIGNDS

Input: ∆ ∈ Rd: local update; k: the number of parameters in the top-k set; ε: privacy budget; s:
sampled sign

Output: j: selected dimension index
1: Initialize top-k status vector z = {0}d
2: if s=1 then
3: Sort ∆ by real value and select the top-k

largest values to construct set Stopk
4: else
5: Sort ∆ by real value and select the top-k smallest values to construct set Stopk
6: end if
7: For j ∈ {1, · · · , d}, if ∆j ∈ Stopk, set zj = 1.
8: Sample a Bernoulli variable x such that

Pr[x = 1] =
eε · k

d− k + eε · k
(6)

9: if x = 1 then
10: Randomly sample index j ∈ {j ∈ {1, · · · , d}|zj = 1}
11: else
12: Randomly sample index j ∈ {j ∈ {1, · · · , d}|zj = 0}
13: end if
14: Return j

the selected dimension is perturbed. Finally, a sparse local update is constructed and returned to the
server. Although Liu et al. (2020) mitigates the dimension-dependency problem by only selecting
one ”important” dimension, the privacy budget is still consumed by the two stages. In high-privacy
scenarios (where the privacy budget is small), each stage may therefore obtain only an insufficient
privacy budget and cause large randomness.

Motivated by the limitations of Liu et al. (2020), we propose a signed dimension selection algorithm
SIGNDS, as presented in Algorithm 1. The main idea is to substitute the VP stage by assigning a
constant value to the selected dimension. Since the parameter values may have different signs, we
introduce an extra input variable s ∈ {−1, 1}, which is randomly sampled by the server. Given an
input local update ∆ ∈ R, we first initialize a binary top-k status vector z = {0}d (line 1). Then,
instead of sorting by absolute value as in Liu et al. (2020), we sort ∆ by original value and construct
the top-k set Stopk based on s: if s = 1, we select the top-k largest values to build Stopk; otherwise,
we select the top-k smallest values. For any dimension j ∈ {1, · · · , d}, if ∆j is in the top-k set
Stopk, we set zj = 1 (line 7). We refer to these dimensions as top-k dimensions and to others as
non-top-k dimensions. Then, a dimension index j is randomly sampled as follows:

j ∈
{
{j ∈ {1, · · · , d}|zj = 1} w.p. p

{j ∈ {1, · · · , d}|zj = 0} w.p. 1− p (5)

Namely, the index j is sampled from the top-k dimensions with a probability p and otherwise from
the non-top-k dimensions. We refer to p as the top-k probability. Finally, the dimension index j
is returned to the server. At this stage, our proposed algorithm only returns the dimension index.
As such, we save the privacy budget for the value perturbation in Liu et al. (2020). With the same
privacy level, we can now achieve less randomness and thus higher accuracy in dimension selection.

In the following, we provide the privacy guarantee and utility analysis of Algorithm 1.

Lemma 1. Algorithm 1 satisfies ε-LDP when p ≤ eε·k
d−k+eε·k .

Proof. For each client, given the sampled sign s and any output dimension index j ∈ {1, · · · , d}, let
z, z′ ∈ {0, 1}d be the top-k status vector of any two possible local update vectors x and x′. When
p ≤ eε·k

d−k+eε·k we have:
Pr[j|x]

Pr[j|x′]
=

Pr[j|z] · Pr[z|x]

Pr[j|z′] · Pr[z′|x′]
=

Pr[j|z]
Pr[j|z′]

≤ Pr[j|zj = 1]

Pr[j|z′j = 0]
=

p · 1
k

(1− p) · 1
d−k

≤ eε (7)

10
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Algorithm 2: Training of Generative Model

Input: M1 ∈ Rd: initial global model; n: number of per-round clients; E: number of local epochs;
η: local learning rate; k: number of parameters in the top-k set of each local update; T :
number of global aggregation rounds; γ: global learning rate; εr: per-round privacy budget

Output: Trained WAE model M

Server executes:
1: for global round t = 1, · · · , T do
2: Randomly select a group of n clients
3: for client i = 1, · · · , n in parallel do
4: Randomly sample a sign sit ∈ {1,−1} with probability Pr[sit = 1] = 0.5
5: Broadcast current global model Mt and the sampled sign sit to the client
6: Receive dimension index from client jit = LocalUpdate(Mt, E, η, εr, k, s

i
t)

7: Build sparse local update ∆̂i
t = {0}d and set ∆̂i

t[j
i
t ] = sit

8: end for
9: Aggregate local updates: ∆̂t = 1

n

∑n
i=1 ∆̂i

t

10: Update global model Mt+1 = Mt + γ · ∆̂t

11: end for
12: Return Global model M = MT+1

LocalUpdate(Mt, E, η, εr, k, s
i
t):

// Run on the client side

13: Initialize local model M i
t ←Mt

14: for epoch e = 1, · · · , E do
15: M i

t = M i
t − η · ∇L(M i

t , X
i)

16: end for
17: Calculate local update: ∆i

t = M i
t −Mt

18: Select dimension jit = SignDS(∆i
t, k, εr, s

i
t)

19: Return jit

In addition to the privacy guarantee, we are also interested in how to choose proper k and ε in order
to achieve a certain top-k probability p. Let α = k/d be the ratio of the top-k parameters regarding
the total number of parameters. An α = 1 means to randomly select one dimension from the entire
dimension group. Intuitively, the smaller α, the closer the parameter values of top-k dimensions to
the real largest (or smallest) value and the better the model utility. We derive relations among ε, p
and α as follows:
Corollary 1. Given privacy budget ε, to achieve a probability p, α should satisfy α ≥ p

eε·(1−p)+p

Corollary 2. Given fixed top-k ratio α, to achieve a probability p, ε should satisfy ε ≥ log p·(1−α)
(1−p)·α

Proof. From Lemma 1, we have:

p ≤ eε · k
d− k + eε · k

=
eε · α

1− α+ eε · α
(8)

thus, with a fixed ε, we have: α ≥ p
eε·(1−p)+p ; with a fixed α, we have: ε ≥ log p·(1−α)

(1−p)·α

Corollary 1 states that with a fixed privacy budget ε, a smaller top-k ratio α leads to a decrease of
top-k probability p. Namely, we have to choose a large α in order to ensure the index is more likely
to be sampled from top-k dimensions. As ε increases, α does not differ much regarding p. In other
words, we can always achieve a high top-k probability even with a small top-k ratio. Moreover,
given an expected top-k probability p and a predefined top-k ratio α, the minimum required privacy
budget ε can be calculated using Corollary 2.
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B.2.2 OVERALL TRAINING PROCESS

We now describe the overall training process presented in Algorithm 2. At each global round t, the
server selects a group of n clients. For each client i, the server randomly samples a sign sit ∈ {−1, 1}
with equal probability (line 4) and sends sit together with the current global model Mt to the client
(line 5). On the local side, the client i in the group trains the global model for several gradient
descent epochs with his local data Xi (line 14-16) and computes the local update ∆i

t (line 17).
Given the sampled sign sit and the predefined privacy budget εr, the SIGNDS algorithm is applied
on ∆i

t which privately selects a dimension index jit and returns to the server (line 18). As discussed
in Lemma 1, the SIGNDS algorithm satisfies εr-LDP. After receiving the index jit , the server builds a
sparse local update ∆̂i

t and assign sit to the selected dimension (line 7). Finally, the server aggregates
all the sparse local updates (line 9) and updates the global model with a global learning rate γ (line
10). The updated global model Mt+1 is distributed again to local clients to start the next round.

It should be noted that according to Property 1, if the same client repeatedly participates in the
training and submits the local update for multiple global rounds, the overall privacy guarantee for
the local data will be accumulated. Assume each client is allowed to participate in at most tr global
rounds. In order to ensure an overall privacy guarantee of ε-LDP for each client’s local data after
the whole training process, the per-round privacy guarantee should satisfy εr ≤ ε/tr. Moreover,
during the training process, we monitor participating rounds of each client. If a client has reached
the maximum participating rounds (which is tr here), he is not allowed to participate in the later
training process.

C EXPERIMENT SETTINGS

C.1 BASELINE METHOD

In the following experiments, we use LOPUB Ren et al. (2018) and LOCOP Wang et al. (2019b) as
our baseline algorithms. In comparison to our data synthesis-based solution, both algorithms apply
LDP directly on the local data and send the randomized data to the server. The local randomization
follows the RAPPOR algorithm which firsly hash the local data into Bloom filter strings and then
randomly flip the bits according to the randomized technique. Given d as the dimension of local
data, h as the number of hash functions and f as the flip probability, the overall privacy for each
individual client is:

ε = 2 · d · h · ln((2− f)/f) (9)
Then, the randomized data will be aggregated on the server side for estimating the joint distribu-
tions and attribute dependencies and such information will then be finally used for constructing the
synthetic dataset: LOPUB generates the dependency graph based on a dependence threshold φ and
estimates k-way joint distributions to generate the synthetic data; LOCOP leverages multivariate
Gaussian copula to determine attribute dependencies and generates synthetic data by only using 1-
and 2-way joint distributions. For both algorithms, we use the Lasso-based regression for estimat-
ing the joint distributions. In addition, we follow Ren et al. (2018) to choose the number of hash
function h = 4 and the dependence threshold φ = 0.4.

C.2 DETAILS OF DATASETS AND MODELS

We use four open-source datasets for evaluating the performance of our framework. Each dataset
contains multi-dimensional data records, which are used for classification tasks:

• The Census dataset Dua & Graff (2017) contains records drawn from the 1990 United
States census data, which include 68 personal attributes such as gender, income and mar-
riage status. We use the dataset for a classification task to determine the duration of people’s
active duty service.

• The Twitter dataset Kawala et al. (2013) contains records with 77 attributes such as the
number of discussions, average discussion length, and the number of authors, which are
used to predict the number of active discussions, namely the popularity magnitude of each
instance. In our experiment, we quantify the values of each attribute into 5 bins. The goal
is to classify the level of popularity of each instance.
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Table 1: Datasets details

Dataset Type Num. Num. Domain
Records Attributes Size

Census Integer 2458285 69 2150

Twitter Integer 140707 78 2181

Vehicle Binary 98528 101 2101

Adult Binary 32561 124 2124

Table 2: Structure of WAE models

Dataset Num.Params Model Structure

Census 76524 Input-Dense(96, relu)-Dense(24)
-Dense(96, relu)-Output(sigmoid)

Twitter 94961 Input-Dense(128, relu)-Dense(36)
-Dense(128, relu)-Output(sigmoid)

Vehicle 13093 Input-Dense(64, relu)-Dense(16)
Adult 16060 -Dense(64, relu)-Output(sigmoid)

• The Vehicle dataset Duarte & Hu (2004) contains data collected in wireless distributed
sensor networks. Each record has 100 attributes representing data collected from different
acoustic and seismic sensors. The goal is to train a classifier for vehicle type classification.

• The original Adult dataset Kohavi (1996) contains records with 15 personal attributes such
as age, occupation, education and gender. The goal is to train a binary classifier which
determines whether a person earns more than 50K a year. We use the processed version
from Platt (1999) which converts the original attributes into 123 binary features.

We present details of each dataset in Table 1, which include the number of records and attributes, the
length of the one-hot encoded input and the total domain size. Since the number of local data should
be large in order to preserve data utility (which will be discussed in Appendix E.1), in the following
experiments, we simulate the large-scale distributed scenario by assuming there are 5× 104 clients,
each holding 2 data records. Hence, we randomly sample 105 records for each dataset. For datasets
with more than 105 records (i.e., Census and Twitter), we do the sampling without replacement.

We vary the structure of WAE models to fit the input size of different datasets. Details of the WAE
models can be found in Table 2.

C.3 PARAMETER CONFIGURATIONS

In the experiments, we assume there are 5 × 104 clients. We set the global round T = 5000, and
n = 10 clients are sampled to train the WAE model in each global round; namely, each client is
sampled once during the whole training process. We set the global learning rate γ = 1. For local
training, each client updates the model for E = 10 epochs with a learning rate η = 0.001. For
the local randomization, we choose the top-k ratio α from {0.05, 0.1, 0.25}. Moreover, we vary
the privacy parameters ε in order to explore the influence of privacy on the performance of the
framework. In our experiments, we choose ε ∈ {1, 2, 4, 6, 8}.
It should be noted that ε here is the overall local privacy budget for each client. As mentioned in
Section 2, if each client participates in tr global training rounds, the per-round privacy budget should
satisfy εr ≤ ε/tr. Since we assume that each client only participates once during the whole training
process, we have tr = 1 and the per-round privacy budget is equal to the overall privacy budget.
Moreover, we would like to emphasize that the selected εs are reasonable local privacy guarantees
for collecting d-dimensional data. Consider the privacy guarantee of the baseline algorithms (Equa-
tion (9)), with the number of hash function h = 1 and a flipping probability f = 0.5, we already
have ε = 150 for the Census dataset with d = 68. For the Adult dataset with d = 124, the overall ε
is even 272, which is significantly larger than our setting.
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Table 3: Computation time of model training and synthetic data generation

Dataset Adult Vehicle Census Twitter

Training Client 1.06 s 0.93 s 1.28 s 1.25 s
Server 3.51 ms 3.05 ms 4.95 ms 4.92 ms

Data Generation 7.38 s 7.37 s 9.44 s 10.47 s

Figure 5: Averaged correlation error (CMD) be-
tween the real and synthetic data with different
privacy levels.

Figure 6: Correlation comparison between the
real and synthetic data with ε = 8 and α = 0.1.
For each dataset, we present the correlations of
the first 10 attributes. It can be seen that the syn-
thetic data preserves similar correlations as real
data.

C.4 COMPUTATION ENVIRONMENTS

We implement the proposed DP-FED-WAE framework based on Tensorflow and perform all the
experiments on a server with Intel E5-2470 2.40GHz CPU. In Table 3, we report the computational
time of: 1) 10 epochs of local training on each client side; 2) one round of local updates aggregation
and global model update on the server side; 3) generation of 105 synthetic records on the server side.

D EXPERIMENT RESULTS

D.1 COMPARISON OF CORRELATION

For the comparison of correlation, we respectively compute the Pearson correlation coefficient of
the real and synthetic dataset and use the Correlation Matrix Distance (CMD) Herdin et al. (2005)
to measure the distance between the two correlations, which is defined as follows:

CMD = 1− tr{RrealRsyn}
‖Rreal‖2‖Rsyn‖2

(10)

where Rreal and Rsyn are correlation coefficient matrices of real and synthetic data, tr(·) is the
matrix trace, ‖ · ‖2 is the Frobenius norm. The CMD is bounded by [0, 1], where zero means the two
correlation matrices are identical.

For each dataset, we calculate the CMD of the synthetic data generated by both the baseline algo-
rithms and our framework under different privacy levels and compare the results in Figure 5. It can
be seen that with the same ε, the baseline algorithms (referred to as LoPub and LoCop) always show
a much larger CMD in comparison to the results of our framework (referred to as WAE). Although
increasing the ε helps to reduce the CMD, it is still insufficient for preserving the multivariate cor-
relations of real data. On the other hand, the synthetic data generated by our framework shows a
distinctive decrease with the increase of ε. In particular, the CMD is close to zero when ε ≥ 5,
indicating that the synthetic data have similar cross-attribute correlations as real data.

We further visualize the correlation coefficient matrix of real data and synthetic data with heat maps
in order to better understand the capability of our method in capturing and preserving the cross-
attribute correlations. Figure 6 shows the comparison result of the different datasets with ε = 8 and
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Figure 7: Average total variation distance (AVD)
of 4-way joint distribution between the real
and synthetic data generated by our framework
(WAE) as well as by the baseline algorithms
(LoPub, LoCop) under different privacy levels.

Figure 8: Classification accuracy of random
forest (RF) trained with real data (Real Data)
and synthetic data generated by our framework
(WAE) as well as by the baseline algorithms
(LoPub, LoCop) under different privacy levels.

α = 0.1. For each dataset, we present the correlations of the first 10 attributes. From the results, it
can be seen that the correlation of synthetic data is similar to the correlation of real data, indicating
that the synthetic data successfully preserves the attribute correlations of real data.

D.2 COMPARISON OF JOINT DISTRIBUTIONS (EXTENDED)

We analyze the AVD of all three algorithms with respect to the privacy level ε. For each dataset,
we respectively compare the AVD of the synthetic data generated by the baseline algorithms and
by our framework. In Figure 7, we present the results for the 4-way joint distribution with different
privacy budgets. It can be seen that the AVD of all the algorithms decreases with the increase of ε.
For all datasets, the synthetic data generated by our framework (referred to as WAE) constantly have
smaller AVD in comparison to the baseline methods, indicating that the synthetic data generated
by our framework preserves better multivariate distributions than the baseline methods. Also, we
notice that the non-binary datasets Census and Twitter usually show larger AVD in comparison to the
other two binary datasets. This is due to the fact that the non-binary datasets have a larger domain
size, which leads to lower frequencies of the potential attribute combinations. Therefore, it is more
difficult for the generative models to find meaningful mappings between the original input space and
the compact latent space, which results in a comparatively larger difference between the synthetic
data and real data.

D.3 AI TRAINING PERFORMANCE (EXTENDED)

In Figure 8, we present the evaluation results on random forest (RF) under different privacy levels.
Similary as in Figure 3, the Accsyn of our method shows distinctive outperformance in compari-
son to the baseline algorithms, which indicates that the synthetic data generated by our framework
preserves better utility for AI training tasks.

D.4 IMPACT OF THE NUMBER OF RECORDS

In the above experiments, we assume a group size of 5 × 104 clients and in total 105 records. We
further investigate how the number of records impacts the utility of synthetic data. We vary the
number of records among {104, 105, 106}. Similar to previous experiments, we assume that each
client holds two data records and only participates once during the whole training process. For the
experiments with 104, we set the total global rounds T = 500 with n = 10 clients for each round.
For the experiments with 106 records, we set the total global rounds T = 5000 with n = 100 clients
for each round.
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(a) Accuracy of neural networks (b) Accuracy of random forests

Figure 9: Classification accuracy of (a) neural network (NN) and (b) random forest (RF) with dif-
ferent number of records under the privacy level of ε = 8.

We evaluate the accuracy of both classification models (i.e., 2-layer NN and RF) with respect to the
number of records and present the results in Figure 9a and Figure 9b. Here we compare the results
under a privacy of ε = 8 (and α = 0.1 for our method). Although both algorithms show higher
classification accuracy with a larger number of records, the baseline algorithms still cannot achieve
significant improvements even with the largest number of records. In comparison, the classification
accuracy of our method constantly outperforms the baseline algorithms. In addition, we notice that
the classification accuracy in the experiments with 104 records is distinctively lower than others.
This is because the generative model is underfitted when trained on a limited number of records
and thus cannot generate high-utility synthetic data. On the other hand, although a larger number
of local data (e.g., 106) ensures the generative model be fully-trained, the model performance does
not improve much after achieving convergence and thus cannot reach much improvement regarding
classification accuracy.

D.5 AUXILIARY DATA FOR MODEL DESIGN AND PRE-TRAINING

Before applying the WAE model for collecting clients’ local data, the server needs to design the
model structure. An appropriate model structure helps to enhance the capability of capturing the
local data distributions and thus the utility of synthetic data. In our scenario, the server only knows
the basic properties of the data to be collected, such as the number of attributes and the domain
of each attribute. The server can thus use some auxiliary data to optimize the model structure.
The auxiliary data here refer to certain public datasets or randomly generated data that have the
same basic properties as local data. The server can use such data to simulate the data collection
process and tune the model structure by evaluating the utility of the synthetic data. Moreover, the
auxiliary data can also be used for pre-training the WAE model before applying the model in the
data collection process, so as to improve the model convergence and the performance of synthetic
data generation.

In Table 4, we compare the utility of synthetic data generated by WAE models with (w) and without
(w/o) pre-training under the setting of α = 0.1 and ε ∈ {4, 8}. For each dataset, we randomly
generate an auxiliary dataset only using the basic properties of real data, as mentioned before. We
use the auxiliary dataset to pre-train the WAE model and apply the pre-trained model to the data
collection process. We respectively evaluate the utility of synthetic data generated in both scenarios
based on the classification accuracy of NNs and RFs. For both types of models, we observe that
the synthetic data generated by pre-trained WAE models achieve 1 ∼ 2% increase in classification
accuracy. The results demonstrate that using auxiliary data to pre-train the WAE model is feasible
to enhance the model convergence in the data collection process and further improve the synthetic
data utility.
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Table 4: Classification accuracy of synthetic data generated by WAE models with (w) and without
(w/o) pre-training

Accuracy - NN Accuracy - RF
Dataset w/o w w/o w

Census ε = 8 0.948 0.960 0.952 0.965
ε = 4 0.929 0.935 0.932 0.940

Twitter ε = 8 0.786 0.798 0.788 0.796
ε = 4 0.771 0.782 0.778 0.785

Vehicle ε = 8 0.781 0.795 0.788 0.794
ε = 4 0.762 0.789 0.763 0.782

Adult ε = 8 0.808 0.815 0.812 0.820
ε = 4 0.787 0.798 0.775 0.789

E RELATED WORK

E.1 DATA COLLECTION UNDER LDP

Differential privacy (DP) Dwork & Roth (2014), as a strong mathematical formalization of privacy,
has been used as a criterion for privacy protection in data publishing, data analysis, and machine
learning (Dwork et al. (2009); Zhang et al. (2017); Abadi et al. (2016)). However, these works as-
sume a trusted server (data curator), who first collects the original local data, then performs data
analysis and releases data under differential privacy. In order to eliminate the assumptions of trust-
worthy servers during the data collection process, local differential privacy (LDP) Kasiviswanathan
et al. (2011) has been proposed, which provides strong privacy guarantees to local data. By utilizing
local randomization algorithms, the server cannot infer any individual’s original data but can learn
the overall statistics of the whole population. However, prior research on LDP mainly focuses on
collecting one-dimensional statistical information, such as frequency estimation (Erlingsson et al.
(2014); Differential Privacy Team (2017)), heavy-hitter identification (Bassily et al. (2017); Bun
et al. (2018)) and itemset mining (Qin et al. (2016); Wang et al. (2018)). Regarding scenarios with
multi-dimensional data, Alaggan et al. Alaggan et al. (2012) propose to encode a clients profile data
into private Bloom filters and to compute in a distributed fashion the similarity between clients under
DP guarantees. A follow-up work Alaggan et al. (2018) applied the private mechanism to the analy-
sis of aggregated statistics (e.g., count of distinct elements) of stream data. However, both works do
not involve the estimation of joint distributions and cross-attribute correlations, which differs from
our objectives.

Actually, applying the above LDP-based algorithms to estimate complex statistics of high-
dimensional data will cause extremely large communication overhead as well as a degradation
in data utility. Consider, for example, RAPPOR Erlingsson et al. (2014), a state-of-the-art LDP-
based data collection algorithm. For d-dimensional binary data with d = 32, we have domain size
|Ω| = 232 ≈ 4.3×1010. Directly applying RAPPOR consumes a communication cost and a storage
space ofO(|Ω|) Ren et al. (2018). Also, for high-dimensional input domains, it is not uncommon for
each client to have a unique feature combination. Therefore, it is essential to collect a large number
of data in order to cover all the possible combinations in the feature domain. Given a domain size
Ω, as a general rule of thumb Erlingsson et al. (2014), the number of local data N should follow√
N/10 ≥ |Ω|. In the above example, N ≥ 100 · 264 ≈ 1.8 × 1021. All of these requirements are

impractical for real-world applications.

In subsequent research, Fanti et al. Fanti et al. (2016) proposed to separately collect data of each di-
mension under RAPPOR and estimate the joint distributions using expectation maximization (EM).
Although the algorithm significantly reduces the communication overhead between clients and the
server, it only supports to estimate the joint distribution of two attributes. Based on Fanti et al.
(2016), Ren et al. proposed LOPUB Ren et al. (2018), which reduces d-dimensional data to k-
dimensional clusters (k < d) using dependence graphs and estimates k-way joint distributions with
an EM-based and Lasso regression-based approach. However, the algorithm still suffers from high
computational complexity and low data utility when k is large. An improved scheme, LOCOP Wang
et al. (2019b) was further proposed, which leverages multivariate Gaussian copula to estimate cross-
attribute dependencies and to construct synthetic data.
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Instead of directly randomizing the local data, our framework uses deep generative models to learn
the data distributions and to generate synthetic data without accessing real data, which effectively
enhances data utility. In our experiments, we use LOPUB and LOCOP as the baselines to compare
the frameworks’ performance in terms of data utility.

E.2 DIFFERENTIALLY-PRIVATE SYNTHETIC DATA GENERATION

Differentially-private synthetic data generation has been extensively studied over recent years as an
alternative solution to privacy-preserving data publishing. Previous works (Li et al. (2014); Zhang
et al. (2017); Ren et al. (2018)) analyzed statistical distributions of original data under differential
privacy and used them to generate synthetic data. With the development of deep learning, later works
propose to use differentially-private generative models (Park et al. (2018); Torkzadehmahani et al.
(2019)) to directly generate privacy-preserving synthetic data. By training deep generative models
under differential privacy definition, synthetic data can provide strong privacy protection on original
data while preserving high data utility. However, these prior works only focus on the centralized
setting, where the server has already collected the real local data and uses them to generate synthetic
data for privacy-preserving data publishing. In contrast, our approach is practical for a distributed
setting, where the server cannot directly collect the real data but is interested in learning statistical
information about the data.

Recent works of Augenstein et al. (2020) and Triastcyn & Faltings (2020) also investigate the syn-
thetic data generation under the federated setting. However, both studies either have a different
focus from ours or have certain limitations. The work by Augenstein et al. Augenstein et al. (2020)
proposed to use generative models (e.g., GAN and recurrent neural networks) to detect errors and
bugs in local data. However, as they claimed, such data examination applications are based on ob-
serving the performance change of generative models, which do not require high-fidelity generation.
In comparison, our framework is able to generate synthetic data with high utility and fidelity, which
can replace real data in data mining and AI training tasks. On the other hand, although Triastcyn et
al. Triastcyn & Faltings (2020) focused on generating and publishing synthetic data, their method
is only limited to image data. In addition, they adopted a weaker measure of privacy for preserving
the model utility. In comparison, our framework can be applied for both structured and unstructured
data. In this paper, we mainly focus on the collection of high-dimensional structured data (especially
categorical data with high sparsity) and compare the performance with LDP-based algorithms. But
in Section 3 we further provide evidence that our framework can also be used on complex datasets,
such as image data. Moreover, we apply strict LDP randomization on the client side, which provides
strong privacy guarantees for clients’ local privacy.
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