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ABSTRACT

Algorithms learn rules and associations based on the training data that they are
exposed to. Yet, the very same data that teaches machines to understand and pre-
dict the world, contains societal and historic biases, resulting in biased algorithms
with the risk of further amplifying these once put into use for decision support.
Synthetic data, on the other hand, emerges with the promise to provide an unlim-
ited amount of representative, realistic training samples, that can be shared further
without disclosing the privacy of individual subjects. We present a framework
to incorporate fairness constraints into the self-supervised learning process, that
allows to then simulate an unlimited amount of representative as well as fair syn-
thetic data. This framework provides a handle to govern and control for privacy
as well as for bias within Al at its very source: the training data. We demonstrate
the proposed approach by amending an existing generative model architecture and
generating a representative as well as fair version of the UCI Adult census data set.
While the relationships between attributes are faithfully retained, the gender and
racial biases inherent in the original data are controlled for. This is further vali-
dated by comparing propensity scores of downstream predictive models that are
trained on the original data versus the fair synthetic data. We consider represen-
tative & fair synthetic data a promising future building block to teach algorithms
not on historic worlds, but rather on the worlds that we strive to live in.

1 INTRODUCTION

Decision processes within public as well as private organizations are increasingly supported by
machine learning algorithms. These come with the benefit of being fast, scalable, consistent, and
oftentimes more accurate as well as objective{]_-] compared to human judgement. However, these
algorithms depend on the provided training data to represent, understand and predict the world. And
thus, any historic discrimination against groups based on their gender, race or sexual orientation,
that is already present in the training data, influences the model as well (Kearns & Roth, 2019;
Barocas et al.,2017). If not addressed, these systemic biases end up in data sets that decision-making
algorithms are trained on. Subsequently, the biased algorithms make unfair decisions, perpetuating,
and actually amplifying the biases in our society. More often than not, engineers or managers are not
aware of the issue at hand, making unwanted bias one of the key challenges for establishing Ethical
AL

Al-generated synthetic data emerges as a novel approach to safely share (training) data with third
parties. As it strives to retain statistical information of an original data set, it does break the 1:1 re-
lationship to actual records and thus can effectively prevent the re-identification of individuals. But
the very same generative models, that are tasked to yield realistic, representative synthetic samples,

'E.g., [Gates et al,| (2002) showed how the adoption of automated underwriting in mortgage lending con-
tributed to the increase of approval rates for minority and low-income applicants by 30% while improving the
overall accuracy of default predictions.



Synthetic Data Workshop - ICLR 2021

can be amended to shift patterns and relationships in order to make the data also fair. For simplic-
ity, we start out with adopting the concept of statistical parity for the purpose of this introduction,
whereas the approach can also be expanded to other fairness definitions. Statistical parity requires
that a classifier gives equal probability with respect to a target variable, independent of whether a
subject is or is not contained within a protected group.

There are three points in the machine learning life cycle where one can mitigate bias: at the source,
by changing the training data; during the modeling phase by using additional fairness constraints;
and as a post-processing step, by revising the algorithm’s decisions in favor of a sensitive group.
Naive data-level techniques, such as oversampling methods, have the risk of skewing important data
distributions when mitigating imbalances. Similarly, simply excluding the sensitive column, like
race or gender, can have detrimental effects (Besse et al., 2020), as the effect can still be present, yet
less apparent, via proxy attributes Thus, it requires a complete representation of the data structure
to control for proxy variables in order to properly account for fairness. And for that reason, we
propose to incorporate fairness constraints into the training data itself to govern for Al bias already
at its source.

Generative deep neural networks are typically tasked to optimize an accuracy loss, in order to yield
a model that provides truly new, synthetic samples, that are representative of the original records.
That loss measures how well the fitted function matches the observed distributions of the real data.
In order to get representative & fair data, we propose to add an additional fairness loss to the loss
function, which penalizes any violation of the statistical parity. That is, we optimize for a combined
loss: a weighted sum of the accuracy loss and a fairness loss where the fairness loss is proportional
to the deviation from the empirically estimated statistical parity. With all other things equal, this
approach allows to explicitly trade off accuracy with fairness, by shifting weights from one loss
component to the other

2  EMPIRICAL DEMONSTRATION

2.1 IMPACT ON DESCRIPTIVE STATISTICS

In order to demonstrate the effectiveness of the concept, we expanded an existing data synthesizer
for tabular data with the additional loss component for fairness. We chose to synthesize the well-
known Adult income data set (Dua & Graff] |2017) end-to-end 50 times, each time training the
generative model with a parity fairness constraint and treating gender as the protected attribute.
Whereas the original data set exhibits a clear gender imbalance within the high-income class, that
bias is successfully mitigated in the synthetic data, as is reported in Figure[I] With regards to parity,
it is common to compare not just the difference but the fraction of high-income male ratio to high-
income female ratio. This fraction is called the disparate impact and it is an industry-standard to ask
for at least 0.8, the so-called four-fifth rule. In the original data set, this fraction is roughly 10/30
= 0.33, a quite severe disparate impact violation but the bias-corrected synthetic data is at 22/25 =
0.88, well over the threshold.

Equally important, the additional parity constraint during model training did not diminish the quality
of the synthetic data itself (see Figure[2). The univariate distributions of the original data remain
perfectly preserved, including the population-wide male-to-female ratio, as well as the high-earner-
to-low-earner ratios. Also, the bivariate correlations are in good agreement with the original data
for all but one relationship. Given the statistical parity constraint “income must not depend on sex”,
these two attributes should not be correlated. While in the original data, there is a clear “sex”-
“income” correlation, this dependency is almost reduced to noise level in the representative & fair
synthetic data set.

We conducted further experiments to study the impact of proxy attributes, and to see whether they
can still introduce unfairness through a backdoor, as they are not explicitly accounted for in the
parity constraint. We added an artificial feature to the Adult data set named “proxy”, that is strongly

Imagine we know which neighborhood a person lives in, the brand and model of the person’s mobile phone,
the car this person drives, where this person buys her/his clothes, etc. Given some of the above information, we
humans can make an educated guess on this person’s sex, skin color, and other attributes. And since algorithms
are better in analyzing patterns like this, they will definitely detect these correlations and exploit them, leading
again to unfair predictions and decisions. We could actually go one step further and say that leaving the “sex”
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Figure 2: Comparison of univariate and bivariate statistics for original and synthetic data.

correlated with gender. For females, “proxy” equals to 1 in 90% of all cases and equals to O for the
remaining 10%. For males, the percentages are swapped. A subset of the resulting correlation plots
is displayed in Figure 3] The original data shows strong correlation between “sex” and “proxy”,
as well as ”sex”/”’proxy” and “income”. For the synthetic data, the correlation between “sex” and
“proxy” remains intact, whereas the correlation of both of these to “income” is significantly reduced
due to the induced fairness constraint. This demonstrates that the parity also successfully accounts
for (hidden) proxy attributes.
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Figure 3: The parity-fairness constraint also accounts for proxy attributes for gender.

In the Adult data set, gender is not the only sensitive attribute: if the generative model is trained
incorporating a fairness constraint for “race”, we can achieve similar results as reported for gender.
But what if we want to account for fairness with respect to multiple attributes at the same time?
In this case, one must be careful what ratios to optimize: if we were to simply put fairness losses
independently on race and gender then the algorithm might fall into the mistake of “fairness ger-
rymandering” (Kearns et all, [2018). That is, the new data set would look fair with respect to both
gender and race individually, but we would see high imbalances when restricted to gender and race

column in the data set is better for fairness because it offers a clear handle to enforce fairness constraints such
as statistical parity.

3A very similar approach for training fair classifiers is described in [Manisha & Gujar| (2018), with an
implementation available at https://github.com/yoshavit/fairml-farm,
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simultaneously. Taking this into account, our proposed approach is capable to yield synthetic data
with significantly balanced high-income ratios across all four groups given by race and gender (see
Figure [d). It is apparent that we did not achieve complete parity but this difference can be further
lowered by giving higher weight to the fairness loss against the accuracy loss.

Figure 4: Mitigating bias with respect to gender and race simultaneously.

2.2 IMPACT ON DOWNSTREAM MODELS

We further investigated whether models trained on the de-biased data set yield more fair algorithms.
To this end, we fit logistic regression classifiers to predict the income level using all other attributes
as predictors. The models were fitted both on the original and the bias-corrected synthetic data
and then both were tested on a holdout from the original data. Moreover, we repeated the model
training procedure 50 times with independently generated synthetic data. Table [I]reports the mean
performance of the real and synthetic models over these experiments. The synthetically fitted models
have very competitive performance and generalize well to the unseen real data.

Accuracy AUC F1-Score
original 8549%  91.17%  67.04%
synthetic ~ 84.13%  88.34% 59.8%

Table 1: Average predictive performance of downstream models for income.

Moreover, the models trained on the synthetic data treat the classes of the sensitive attribute (gender,
in this case) nearly equally. Figure [3] visualizes the propensity scores of the corresponding predic-
tive models. The model fitted on the original data assigns a significantly lower probability to women
being in the high-income class when compared to male subjects. However, for the model fitted on
synthetic data that discrepancy in score assignment is reduced, and the gender-specific distributions
largely align. This is exactly the group fairness that parity is designed to capture. The important
thing to keep in mind though is that the predictive-model training itself did not involve any type
of optimization to fairness and the evaluation is also on the biased original data. So this fair out-
come is solely due to using bias-corrected synthetic data for the training. Our results align with the
findings of research conducted at Carnegie Mellon University into fair representations of data (Zhao
& Gordon, 2019). We see that our fairness-constrained synthetic data solution learns to represent
data points in a way that removes the dependencies between the sensitive and target attribute while
preserving other relationships.
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Figure 5: Propensity distribution of downstream models for income.
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A APPENDIX

NOTE TO REVIEWERS: For camera-ready version we shall provide a link to download the repre-
sentative & fair datasets from the empirical section.
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