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ABSTRACT

We propose, implement, and evaluate a new algorithm for releasing answers to
very large numbers of statistical queries like k-way marginals, subject to differen-
tial privacy. Our algorithm makes adaptive use of a continuous relaxation of the
Projection Mechanism, which answers queries on the private dataset using sim-
ple perturbation, and then attempts to find the synthetic dataset that most closely
matches the noisy answers. We use a continuous relaxation of the synthetic dataset
domain which makes the projection loss differentiable, and allows us to use effi-
cient ML optimization techniques and tooling. Rather than answering all queries
up front, we make judicious use of our privacy budget by iteratively and adaptively
finding queries for which our (relaxed) synthetic data has high error, and then re-
peating the projection. We perform extensive experimental evaluations across a
range of parameters and datasets, and find that our method outperforms existing
algorithms in many cases, especially when the privacy budget is small or the query
class is large.

1 INTRODUCTION

A basic problem in differential privacy is to accurately answer a large numberm of statistical queries
(also known as linear and counting queries), which have the form, “how many people in private
dataset D have property P ?” Marginal queries (also known as conjunctions) are one of the most
useful and most studied special cases. The simplest technique for answering such queries is to
compute each answer on the private dataset, and then perturb them with independent Gaussian noise.
This simple technique is useful for answering small numbers of queries. But it has been known
since Blum et al. (2008) that in principle, it is possible to privately and accurately answer very large
classes of queries (of size exponential in n), and that an attractive way of doing so is to encode the
answers in a synthetic dataset. Synthetic datasets have several advantages: most basically, they are
a concise way of representing the answers to large numbers of queries. But they also permit one
to evaluate queries other than those that have been explicitly answered by the mechanism, and to
take advantage of generalization. Unfortunately, it is also known that improving on the error of the
simple Gaussian perturbation technique is computationally hard in the worst case (Ullman, 2016).
Moreover, constructing synthetic datasets is hard even when it would be possible to provide accurate
answers with simple perturbation (Ullman & Vadhan, 2011) for simple classes of queries such as the
set of all

(
d
2

)
marginal queries restricted to 2 out of d binary features (so-called 2-way marginals).

Nevertheless, recent years have seen a resurgence of interest in private synthetic data generation and
large-scale private queries due to the importance of the problem. These approaches offer provable
privacy guarantees, but have run-time and accuracy properties that must be evaluated empirically.
This is the literature to which our work contributes.
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1.1 OUR CONTRIBUTIONS

Our starting point is the (computationally inefficient) projection mechanism of Nikolov et al. (2013),
which is informally described as follows. We begin with a dataset D ∈ Xn. First, the values of
each of the m queries of interest qi are computed on the private dataset: a = q(D) ∈ [0, 1]m.
Next, a privacy preserving vector of noisy answers â ∈ Rm is computed using simple Gaussian
perturbation. Finally, the vector of noisy answers â is projected into the set of answer vectors that are
consistent with some dataset to obtain a final vector of answers a′ — i.e., the projection guarantees
that a′ = q(D′) for some D′ ∈ Xn. This corresponds to solving the optimization problem of
finding the synthetic dataset D′ ∈ Xn that minimizes error ||q(D′) − â||2. This is known to be a
near optimal mechanism for answering statistical queries (Nikolov et al., 2013) but for most data
and query classes, the projection step corresponds to a difficult discrete optimization problem. We
remark that the main purpose of the projection is not (only) to construct a synthetic dataset, but to
improve accuracy.

Our core algorithm is based on a continuous relaxation of this projection step. This allows us to de-
ploy first-order optimization methods, which empirically work very well despite the non-convexity
of the problem. A further feature of this approach is that we can take advantage of sophisticated
existing tooling for continuous optimization — including autodifferentiation (to allow us to easily
handle many different query classes) and GPU acceleration, which has been advanced by a decade
of research in deep learning. This is in contrast to related approaches like Gaboardi et al. (2014);
Vietri et al. (2020) which use integer program solvers and often require designing custom integer
programs for optimizing over each new class of queries. We then extend our core algorithm by giv-
ing an adaptive variant that is able to make better use of its privacy budget, by taking advantage of
generalization properties. Rather than answering all of the queries up front, we start by answering
a small number of queries, and then project them onto a vector of answers consistent with a relaxed
synthetic dataset — i.e., a dataset in a larger domain than the original data — but one that still allows
us to evaluate queries. At the next round, we use a private selection mechanism to find a small num-
ber of additional queries on which our current synthetic dataset performs poorly; we answer those
queries, find a new synthetic dataset via our continuous projection, and then repeat. If the queries
we have answered are highly accurate, then we are often able to find synthetic data representing the
original data well after only having explicitly answered a very small number of them (i.e., we gener-
alize well to new queries). This forms a virtuous cycle, because if we only need to explicitly answer
a very small number of queries, we can answer them highly accurately with our privacy budget.

We evaluate our algorithm on several datasets, comparing it to two state-of-the-art algorithms from
the literature: the high dimensional matrix mechanism from McKenna et al. (2018), and the FEM
(“Follow-the-Perturbed-Leader with Exponential Mechanism”) mechanism from Vietri et al. (2020).
We find that our algorithm generally outperforms both of these approaches across a range of param-
eters — especially in the important and challenging high privacy and large query workload regimes.

2 THE RELAXED ADAPTIVE PROJECTION (RAP) MECHANISM

We here introduce the “Relaxed Adaptive Projection” (RAP) mechanism (Algorithm 2), which has
three hyper-parameters: the number of adaptive rounds T , the number of queries per round K,
and the size of the (relaxed) synthetic dataset n′. In the simplest case, when T = 1 and K =
m, we recover the natural relaxation of the projection mechanism: (1) We evaluate each query
qi ∈ Q on D using the Gaussian mechanism to obtain a noisy answer âi, and (2) Find a relaxed
synthetic dataset D′ ∈ Xr whose equivalent extended differentiable query values are closest to â in
`2 norm: D′ = arg minD′∈(X r)n′ ||q̂(D′) − â||2. Because step 2 is now optimizing a continuous,
differentiable function over a continuous space (of dimension d′ · n′, we can use existing tool kits
for performing the optimization – for example, we can use auto-differentiation tools, and optimizers
like Adam Kingma & Ba (2015). Here n′ is a hyperparameter that we can choose to trade off the
expressivity of the synthetic data with the running-time of the optimization: If we choose n′ = n,
then we are assured that it is possible to express D exactly in our relaxed domain: as we choose
smaller values of n′, we introduce a source of representation error, but decrease the dimensionality
of the optimization problem in our projection step, and hence improve the run-time of the algorithm.
In this simple case, we can recover an accuracy theorem by leveraging the results of Nikolov et al.
(2013):
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In the general case, our algorithm runs in T rounds: After each round t, we have answered some
subset of the queries QS ⊆ Q, and perform a projection only with respect to the queries in QS
for which we have estimates, obtaining an intermediate relaxed synthetic dataset D′t. At the next
round, we augment QS with K additional queries qi from Q \QS chosen (using report noisy max)
to maximize the disparity |qi(D′t) − qi(D)|. We then repeat the projection. In total, this algorithm
only explicitly answers T ·K queries, which might be� m. But by selectively answering queries
for which the consistency constraints imposed by the projection with respect to previous queries
have not correctly fixed, we aim to expend our privacy budget more wisely. Adaptively answering a
small number of “hard” queries has its roots in a long theoretical line of work (Roth & Roughgarden,
2010; Hardt & Rothblum, 2010; Gupta et al., 2012).

Algorithm 1 Relaxed Projection (RP)

Input: A vector of differentiable queries q : X r → Rm′ , a vector of target answers â ∈ Rm′ , and
an initial dataset D′ ∈ (X r)n′ .
Use any differentiable optimization technique (Stochastic Gradient Descent, Adam, etc.) to at-
tempt to find:

DS = arg min
D′∈(X r)n′

||q(D′)− â||22

Output DS .

Algorithm 2 Relaxed Adaptive Projection (RAP)

Input: A dataset D, a collection of m statistical queries Q, a “queries per round” parameter K ≤
m, a “number of iterations” parameter T ≤ m/K, a synthetic dataset size n′, and differential
privacy parameters ε, δ.
Let ρ be such that:

ε = ρ+ 2
√
ρ log(1/δ)

if T = 1 then
for i = 1 to m do

Let âi = G(D, qi, ρ/m).
end for
Randomly initialize D′ ∈ (X r)n′ .
Output D′ = RP (q, â,D′).

else
Let QS = ∅ and D′0 ∈ (X r)n′ be an arbitrary initialization.
for t = 1 to T do

for k = 1 to K do
Define q̂Q\QS (x) = (q̂i(x) : qi ∈ Q \ QS) where q̂i is an equivalent extended differen-
tiable query for qi.
Let qi = RNM(D, qQ\QS , qQ\QS (D′t−1), ρ

2T ·K ).
Let QS = QS ∪ {qi}.
Let âi = G(D, qi,

ρ
2T ·K ).

end for
Define qQS (x) = (qi(x) : qi ∈ QS) and â = {âi : qi ∈ QS} where q̂i is an equivalent
extended differentiable query for qi. Let D′t = RP (qQS , â, D′t−1).

end for
Output D′T .

end if

3 EXPERIMENTAL RESULTS

We evaluate the algorithm on the two datasets used by Vietri et al. (2020) in their evaluation: ADULT
and LOANS (Dua & Graff, 2017). Just as in Vietri et al. (2020), both datasets are transformed
so that all features are categorical — real valued features are first bucketed into a finite number
of categories. The algorithms are then run on a one-hot encoding of the discrete features, as we
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described in Section A.2. To ensure consistency, we use the pre-processed data exactly as it appears
in their repository for Vietri et al. (2020). See Table A1 for a summary of the datasets.

To compare algorithms, we mirror the evaluation in Vietri et al. (2020) and focus our experiments
on answering 3-way and 5-way marginals. We compare to the FEM algorithm from Vietri et al.
(2020) and the High Dimensional Matrix Mechanism (HDMM) from McKenna et al. (2018). We
use the maximum error between answers to queries on the synthetic data and the correct answers on
the real data across queries (maxi |qi(D′)− qi(D)|) as a performance measure. For calibration, we
also report a naive baseline corresponding to the error obtained by answering every query with “0”.
Error above this naive baseline is uninteresting. For all experiments, we fix the privacy parameter δ
to 1

n2 , where n is the number of records in the dataset, and vary ε as reported.

(a) ADULT dataset on 3-way marginals (b) LOANS dataset on 3-way marginals

Figure 1: Max-error for 3-way marginal queries on different privacy levels. The number of marginals
is fixed at 64.

In Fig. 1 (see Fig. A2 for 5-way marginals) we show how our performance scales with the privacy
budget ε for a fixed number of marginals. Fig. 2 (see Fig. A3 for 5-way queries) shows our per-
formance for a fixed privacy budget as we increase the number of marginals being preserved. We
significantly outperform both FEM and HDMM in a large majority of comparisons considered, and
performance is particularly strong in the important high-privacy and high workload regimes (i.e.,
when ε is small and m is large).

(a) ADULT dataset on 3-way marginals (b) LOANS dataset on 3-way marginals

Figure 2: Max error for increasing number of 3-way marginal queries with ε = 0.1

4 CONCLUSION

We have presented a new, extensible method for privately answering large numbers of statistical
queries, and producing a form of synthetic data consistent with those queries. Our method relies on
a continuous, differentiable relaxation of the projection mechanism, which allows us to use existing
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powerful tooling developed for deep learning. We demonstrate on a series of experiments that our
method generally out-performs existing techniques across a wide range of parameters, especially in
the “high privacy” (i.e., small ε) and large workload regimes.
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A APPENDIX

A.1 PRELIMINARIES

A.1.1 STATISTICAL QUERIES AND SYNTHETIC DATA

Let X be a data domain. In this paper, we will focus on data points containing d categorical features:
i.e. X = X1× . . .×Xd, where each Xi is a set of ti categories. A dataset (which we will denote by
D) consists of a multiset of n points from X : D ∈ Xn.

Definition A.1 (Statistical Query Kearns (1998)). A statistical query (also known as a linear query
or counting query) is defined by a function qi : X → [0, 1]. Given a dataset D, we will abuse
notation and write qi(D) to denote the average value of the function qi on D:

qi(D) =
1

n

∑
x∈D

qi(x)

Given a collection of m statistical queries {qi}mi=1, we write q(D) ∈ [0, 1]m to denote the vector of
values q(D) = (q1(D), . . . , qm(D)).

An important type of statistical query is a k-way marginal, which counts the number of data points
x ∈ D that have a particular realization of feature values for some subset of k features.1

Definition A.2. A k-way marginal query is defined by a subset S ⊆ [d] of |S| = k features,
together with a particular value for each of the features y ∈

∏
i∈S Xi. Given such a pair (S, y), let

X (S, y) = {x ∈ X : xi = yi ∀i ∈ S} denote the set of points that match the feature value yi for
each of the k features in S. The corresponding statistical query qS,y is defined as:

qS,y(x) = 1(x ∈ X (S, y))

Observe that for each collection of features (marginal) S, there are
∏
i∈S |Xi| many queries.

Given a set of m statistical queries q, we will be interested in vectors of answers a′ ∈ [0, 1]m that
represent their answers on D accurately:

Definition A.3. Given a dataset D, a collection of m statistical queries represented as q : Xn →
[0, 1]m, and a vector of estimated answers a′ ∈ [0, 1]m, we say that a′ has `∞ or max error α if
maxi∈[m] |qi(D)− a′i| ≤ α.

In this paper we will represent vectors of estimated answers a′ implicitly using some data structure
D′ on which we can evaluate queries, and will write q(D′) for a′. If D′ ∈ X ∗, then we refer to D′
as a synthetic dataset — but we will also make use of D′ lying in continuous relaxations of Xn (and
will define how query evaluation applies to such “relaxed datasets”).

A.1.2 DIFFERENTIAL PRIVACY

Two datasets D,D′ ∈ Xn are said to be neighboring if they differ in at most one data point. We
will be interested in randomized algorithms A : Xn → R (where R can be an arbitrary range).

Definition A.4 (Differential Privacy Dwork et al. (2006a;b)). A randomized algorithm A : Xn →
R is (ε, δ) differentially private if for all pairs of neighboring datasets D,D′ ∈ Xn and for all
measurable S ⊆ R:

Pr[A(D) ∈ S] ≤ exp(ε) Pr[A(D′) ∈ S] + δ.

If δ = 0 we say that A is ε-differentially private.

Differential privacy is not convenient for tightly handling the degradation of parameters under com-
position, and so as a tool for our analysis, we use the related notion of (zero) Concentrated Differ-
ential Privacy:

1We define marginals for datasets with discrete features. In our experimental results we encode continuous
features as discrete by standard binning techniques.
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Definition A.5 (Zero Concentrated Differential Privacy Bun & Steinke (2016)). An algorithm A :
Xn → R satisfies ρ-zero Concentrated Differential Privacy (zCDP) if for all pairs of neighboring
datasets D,D′ ∈ Xn, and for all α ∈ (0,∞):

Dα(A(D),A(D′)) ≤ ρα

where Dα(A(D),A(D′)) denotes the α-Renyi divergence between the distributions A(D) and
A(D′).

zCDP enjoys clean composition and postprocessing properties:
Lemma A.6 (Composition Bun & Steinke (2016)). Let A1 : Xn → R1 be ρ1-zCDP. Let A2 :
Xn ×R1 → R2 be such that A2(·, r) is ρ2-zCDP for every r ∈ R1. Then the algorithm A(D) that
computes r1 = A1(D), r2 = A2(D, r1) and outputs (r1, r2) satisfies (ρ1 + ρ2)-zCDP.
Lemma A.7 (Post Processing Bun & Steinke (2016)). Let A : Xn → R1 be ρ-zCDP, and let
f : R1 → R2 be an arbitrary randomized mapping. Then f ◦ A is also ρ-zCDP.

Together, these lemmas mean that we can construct zCDP mechanisms by modularly combining
zCDP sub-routines. Finally, we can relate differential privacy with zCDP:
Lemma A.8 (Conversions Bun & Steinke (2016)).

1. If A is ε-differentially private, it satisfies ( 1
2ε

2)-zCDP.

2. If A is ρ-zCDP, then for any δ > 0, it satisfies (ρ+ 2
√
ρ log(1/δ), δ)-differential privacy.

We will make use of two basic primitives from differential privacy, which we introduce here in the
context of statistical queries. The first is the Gaussian mechanism.
Definition A.9 (Gaussian Mechanism). The Gaussian mechanism G(D, qi, ρ) takes as input a
dataset D ∈ Xn, a statistical query qi, and a zCDP parameter ρ. It outputs ai = qi(D) + Z, where
Z ∼ N(0, σ2), where N(0, σ2) is the Gaussian distribution with mean 0 and variance σ2 = 1

2n2ρ .

Lemma A.10 (Bun & Steinke (2016)). For any statistical query qi and parameter ρ > 0, the Gaus-
sian mechanism G(·, qi, ρ) satisfies ρ-zCDP.

The second is a simple private “selection” mechanism called report noisy max — we define a special
case here, tailored to our use of it.
Definition A.11 (Report Noisy Max). The “Report Noisy Max” mechanismRNM(D, q, a, ρ) takes
as input a dataset D ∈ Xn, a vector of m statistical queries q, a vector of m conjectured query an-
swers a, and a zCDP parameter ρ. It outputs the index of the query with highest noisy error estimate.
Specifically, it outputs i∗ = arg maxi∈[m](|qi(D)− ai|+ Zi) where each Zi ∼ Lap

(
2

n
√
2ρ

)
.

Lemma A.12. For any vector of statistical queries q, vector of conjectured answers a, and zCDP
parameter ρ, the Report Noisy Max mechanism RNM(·, q, a, ρ) satisfies ρ-zCDP.

Proof. Definition A.11 defines a special case of the “report-noisy-max” mechanism which is proven
to be ε-differentially private for ε =

√
2ρ in Dwork & Roth (2014). The ρ-zCDP bound then follows

from Lemma A.8.

A.2 RELAXING THE PROJECTION MECHANISM

The projection mechanism of Nikolov et al. (2013) can be described simply in our language. Given
a collection of m statistical queries q and zCDP parameter ρ, it consists of two steps:

1. For each i, evaluate qi on D using the Gaussian mechanism: âi = G(D, qi, ρ/m).
2. Find the synthetic dataset2 D′ whose query values are closest to â in `2 norm — i.e., let
D′ = arg minD′∈X∗ ||q(D′)− â||2.

2In fact, in Nikolov et al. (2013), the projection is onto a set of datasets that allows datapoints to have
positive or negative weights — but their analysis also applies to projections onto the set of synthetic datasets in
our sense. A statement of this can be found as Lemma 5.3 in Błasiok et al. (2019).
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The output of the mechanism is the synthetic datasetD′, which implicitly encodes the answer vector
a′ = q(D′). Because the perturbation in Step 1 is Gaussian, and the projection is with respect to
the `2 norm, D′ is the maximum likelihood estimator for the dataset D given the noisy statistics
â. The projection also serves to enforce consistency constraints across all query answers, which
perhaps counter-intuitively, is accuracy-improving. For intuition, the reader can consider the case in
which all queries qi are identical: in this case, the scale of the initial Gaussian noise is Ω(

√
m/n),

which is sub-optimal, because the single query of interest could have been privately answered with
noise scaling only as O(1/n). But the effect of the projection will be similar to averaging all of
the perturbed answers âi, because qi(D′) will be constrained to take a fixed value across all i (since
the queries are identical), and the mean of a vector of noisy estimates minimizes the Euclidean
distance to those estimates. This has the effect of averaging out much of the noise, recovering
error O(1/n). The projection mechanism is easily seen to be ρ-zCDP — the m applications of
(ρ/m)-zCDP instantiations of the Gaussian mechanism in Step 1 compose to satisfy ρ-zCDP by the
composition guarantee of zCDP (Lemma A.6), and Step 2 is a post-processing operation, and so
by Lemma A.7 does not increase the privacy cost. This mechanism is nearly optimal amongst the
class of all differentially private mechanisms, as measured by `2 error, in the worst case over the
choice of statistical queries Nikolov et al. (2013). Unfortunately, Step 2 is in general an intractable
computation, since it is a minimization of a non-convex and non-differentiable objective over an
exponentially large discrete space. The first idea that goes into our algorithm (Algorithm 1) is to
relax the space of datasets Xn to be a continuous space, and to generalize the statistical queries qi
to be differentiable over this space. Doing so allows us to apply powerful GPU-accelerated tools for
differentiable optimization to the projection step 2.

From Categorical to Real Valued Features Our first step is to embed categorical features into
binary features using a one-hot encoding. This corresponds to replacing each categorical feature Xi
with ti binary features X 1

i × . . . × X
ti
i = {0, 1}ti , for each x ∈ X . Exactly one of these new ti

binary features corresponding to categorical feature i is set to 1 for any particular data point x ∈ X :
If xi = vj for some vj ∈ Xi, then we set X ji = 1 and X j

′

i = 0 for all j′ 6= j. Let d′ =
∑d
i=1 ti

be the dimension of a feature vector that has been encoded using this one-hot encoding. Under
this encoding, the datapoints x are embedded in the binary feature space {0, 1}d′ . We will aim to
construct synthetic data that lies in a continuous relaxation of this binary feature space. For example,
choosingX r = [0, 1]d

′
is natural. In our experiments, we chooseX r = [−1, 1]d

′
, which empirically

leads to an easier optimization problem.

Let h : X → {0, 1}d′ represent the function that maps a x ∈ X to its one-hot encoding. We abuse
notation and for a dataset D ∈ Xn, write h(D) to denote the one-hot encoding of every x ∈ D.

From Discrete to Differentiable Queries Consider a marginal query qS,y : X → {0, 1} defined
by some S ⊆ [d] and y ∈

∏
i∈S Xi. Such a query can be evaluated on a vector of categorical features

x ∈ X in our original domain. Our goal is to construct an equivalent extended differentiable query
q̂S,y : X r → R that has two properties:

Definition A.13 (Equivalent Extended Differentiable Query). Given a statistical query qi : X →
[0, 1], we say that q̂i : X r → R is an extended differentiable query that is equivalent to qi if it
satisfies the following two properties:

1. q̂i is differentiable over X r — i.e. for every x ∈ X r,∇qi(x) is defined, and

2. q̂i agrees with qi on every feature vector that results from a one-hot encoding. In other
words, for every x ∈ X : qi(x) = q̂i(h(x)).

We will want to give equivalent extended differentiable queries for the class of k-way marginal
queries. Towards this end, we define a product query:

Definition A.14. Given a subset of features T ⊆ [d′], the product query qT : X r → R is defined as:
qT (x) =

∏
i∈T xi.

By construction, product queries satisfy the first requirement for being extended differentiable
queries: they are defined over the entire relaxed feature space X r, and are differentiable (since
they are monomials over a real valued vector space). It remains to observe that for every marginal
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query qS,y , there is an equivalent product query q̂S,y that takes value qS,y(x) on the one-hot encoding
h(x) of x for every x.
Lemma A.15. Every k-way marginal query has an equivalent extended differentiable query in the
class of product queries. In other words, for every k-way marginal query qS,y : Xn → {0, 1}, there
is a corresponding product query q̂S,y = qT (y) : X r → R with |T | = k such that for every x ∈ X :
qS,y(x) = qT (h(x)).

Proof. We construct T in the straightforward way: for every i ∈ S, we include in T the coordinate
corresponding to yi ∈ Xi. Now consider any x such that qS,y(x) = 1. It must be that for every
i ∈ S, xi = yi. By construction, the product qT (h(x)) =

∏
j∈T h(x)j = 1 because all terms in

the product evaluate to 1. Similarly, if qS,y(x) = 0, then it must be that for at least one coordinate
j ∈ T , h(x)j = 0, and so qT (h(x)) =

∏
j∈T h(x)j = 0.

A.3 THEOREMS

A.3.1 ACCURACY THEOREM

Theorem A.16. Fix privacy parameters ε, δ > 0, a synthetic dataset size n′, and any set ofm k-way
product queries q. If the minimization in the projection step is solved exactly, then the average error
for the RAP mechanism when T = 1 and K = m can be bounded as:√

1

m
||q(D)− q(D′)||22 ≤

O

(
(d′(log k + log n′) + log(1/β) ln(1/δ))1/4√

εn
+

√
log k√
n′

)
with probability 1− β over the realization of the Gaussian noise.

Proof. We reduce to the (unrelaxed) projection mechanism, which has the following guarantee
proven by Nikolov et al. (2013): for any dataset D consisting of n elements from a finite data
universe X , and for any set of m statistical queries q, the projection mechanism results in a dataset

D′ such that:
√

1
m ||q(D′)− q(D)||22 ≤ α for

α = O

(
(ln(|X |/β) ln(1/δ))1/4√

εn

)
.

Consider a finite data universe X η = {0, η, 2η, . . . , 1}d′ for some discretization parameter 0 <
η < 1/k. Given a dataset D′ ∈ X r, let D′η ∈ X η be the dataset that results from “snapping”
each real-valued x ∈ D to its closest discrete valued point xη ∈ X r. Observe that by construction,
||x−x(η)||∞ ≤ η, and as a result, for k-way product query qi, we have |qi(D′)−qi(D′η)| ≤ O(ηk).
Now let D̂′ = arg minD̂′∈(X r)∗ ||a − q(D̂′)|| and D′′ = arg minD′′∈(Xη)∗ ||a − q(D′′)||. From

above, we know that
√

1
m ||q(D′′)− q(D̂′)|| ≤ O(ηk), and hence from an application of the triangle

inequality, we have that
√

1
m ||q(D)− q(D̂′)||22 ≤ O

(
(ln(|Xη|/β) ln(1/δ))1/4√

εn
+ ηk

)
. Finally, for

any dataset D̂′ ∈ (X r)∗, there exists a dataset D′ ∈ (X r)n′ such that
√

1
m ||q(D′)− q(D̂′)||

2
2 ≤

O(
√
log k√
n′

) (This follows from a sampling argument, and is proven formally in Blum et al. (2008).)
Hence, a final application of the triangle inequality yields:√

1

m
||q(D)− q(D′)||22 ≤

O

(
(ln(|X η|/β) ln(1/δ))1/4√

εn
+ ηk +

√
log k√
n′

)
Choosing η =

√
log k

k
√
n′

and noting that |X η| = ( 1
η )d

′
yields the bound in our theorem.

A11



Published at Synthetic Data Generation Workshop at ICLR 2021

This is an “oracle efficient” accuracy theorem in the style of Gaboardi et al. (2014); Vietri et al.
(2020); Neel et al. (2020) in the sense that it assumes that our heuristic optimization succeeds (note
that this assumption is not needed for the privacy of our algorithm, which we establish in Theorem
A.17). Compared to the accuracy theorem for the FEM algorithm proven in Vietri et al. (2020), our
theorem improves by a factor of

√
d′.

A.3.2 PRIVACY THEOREM

Theorem A.17. For any query classQ, any set of parametersK,T, n′, and any privacy parameters
ε, δ > 0, the RAP mechanism RAP (·, Q,K, T, n′, ε, δ) (Algorithm 2) is (ε, δ)-differentially private.

Proof. The privacy of Algorithm 2 follows straightforwardly from the tools we introduced in Section
A.1. First consider the case of T = 1. The algorithm makes m calls to the Gaussian mechanism,
each of each satisfies ρ/m-zCDP by construction and Lemma A.10. In combination, this satisfies
ρ-zCDP by the composition Lemma (Lemma A.6). It then makes a call to the relaxed projection
algorithm RP , which is a postprocessing of the Gaussian mechanism, and hence does not increase
the zCDP parameter, by Lemma A.7. Hence the algorithm is ρ-zCDP, and by our choice of ρ and
Lemma A.8, satisfies (ε, δ) differential privacy.

Now consider the case of T > 1. Each iteration of the inner loop makes one call to report noisy
max, and one call to the Gaussian mechanism. By construction and by Lemmas A.10 and A.12, each
of these calls satisfies ρ

2TK -zCDP, and together by the composition Lemma A.6, satisfy ρ
TK -zCDP.

The algorithm then makes a call to the relaxed projection algorithm RP , which is a post-processing
of the composition of the Gaussian mechanism with report noisy max, and so does not increase
the zCDP parameter by Lemma A.7. The inner loop runs T ·K times, and so the entire algorithm
satisfies ρ-zCDP by the composition Lemma A.6. By our choice of ρ and Lemma A.8, our algorithm
satisfies (ε, δ) differential privacy as desired.

A.4 IMPLEMENTATION AND HYPERPARAMETERS

We implement Algorithm 2 in Python Van Rossum & Drake (2009), using the JAX library Bradbury
et al. (2018) for auto-differentiation of queries and the Adam optimizer Kingma & Ba (2015) for
the call to RP (Algorithm 1). Fig. A1 contains a Jax code snippet, which computes 3-way product
queries on a dataset D. A benefit of using JAX (or other packages with autodifferentiation capa-
bilities) is that to instantiate the algorithm for a new query class, all that is required is to write a
new python function which computes queries in the class — we do not need to perform any other
reasoning about the class. In contrast, approaches like Gaboardi et al. (2014); Vietri et al. (2020)
require deriving an integer program to optimize over each new class of interest. This makes our
method more easily extensible.

JAX also has the advantages of being open source and able to take advantage of GPU acceleration.
We run our experiments for Algorithm 2 on an EC2 p2.xlarge instance (1 GPU, 4 CPUs, 61 GB
RAM). For FEM we use the code from the authors of Vietri et al. (2020) available at https:
//github.com/giusevtr/fem, using the hyperparameters given in their tables 2 and 3 for
the experimental results we report in Figures A2 and A3, respectively. Their code requires the
Gurobi integer program solver; we were able to obtain a license to Gurobi for a personal computer,
but not for EC2 instances, and so we run FEM on a 2019 16” MacBook Pro (6 CPUs, 16GB RAM)
(Gurobi does not support GPU acceleration) — as a result we do not report timing comparisons.
We remark that an advantage of our approach is that it can leverage the robust open-source tooling
(like JAX and Adam) that has been developed for deep learning, to allow us to easily take advantage
of large-scale distributed GPU accelerated computation. For HDMM’s implementation we use the
code available at https://github.com/ryan112358/private-pgm/blob/master/
examples/hdmm.py, which we also run on a MacBook Pro.

For most experiments, we set the size of the synthetic data n′ = 1000 — significantly smaller than
n for both of our datasets (see Table A1).
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A.5 SELECTING MARGINALS

As in Vietri et al. (2020), given k, we select a number of marginals S (i.e., subsets of categorical
features), referred to as the workload, at random, and then enumerate all queries consistent with
the selected marginals (i.e., we enumerate all y ∈

∏
i∈S Xi). For each experiment, we fix the query

selection process and random seed so that all algorithms in our comparisons are evaluated on exactly
the same set of queries.

A.6 ADDITIONAL TABLES FOR EXPERIMENTS

Dataset Records Features Transformed Binary Features
ADULT 48842 15 588
LOANS 42535 48 4427

Table A1: Datasets. Each dataset starts with the given number of original (categorical and real
valued) features. After our transformation, it is encoded as a dataset with a larger number of binary
features.

Parameter Description Values
K Queries per round 5 10 25 50 100
T Number of iterations 2 5 10 25 50

Table A2: RAP hyperparameters tested in our experiments

A.7 ADDITIONAL FIGURES FOR EXPERIMENTS

import j a x . numpy as np
def t h r e e w a y m a r g i n a l s (D) :

re turn np . einsum ( ’ i j , ik , i l −> j k l ’ , D, D, D) /D. shape [ 0 ]

Figure A1: Python function used to compute 3-way product queries
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(a) ADULT dataset on 3-way marginals (b) LOANS dataset on 3-way marginals

(c) ADULT dataset on 5-way marginals (d) LOANS dataset on 5-way marginals

Figure A2: Max-error for 3 and 5-way marginal queries on different privacy levels. The number of
marginals is fixed at 64.
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(a) ADULT dataset on 3-way marginals (b) LOANS dataset on 3-way marginals

(c) ADULT dataset on 5-way marginals (d) LOANS dataset on 5-way marginals

Figure A3: Max error for increasing number of 3 and 5-way marginal queries with ε = 0.1
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